数理视野下的易学(精)/跨学科视野下的易学丛书 (I Ching under the perspective of Mathematics and Science – The Series of I Ching Study under Transdisciplinary perspectives) ISBN: 9787562352761

DO NOT DELETE

古中醫學會圖書館藏書 Ancient Balance Medicine Association Library Collection 

目录
第一章象数新探
第一节易卦是什么
一、易卦是数
二、易卦集是群
三、易卦集是几何模型
四、易卦集是二项式
五、易卦与集合
六、易卦与矩阵
七、易卦与代数域
第二节大衍之数的数学内涵
一、大衍之数的含义
二、大衍之数是互乘之数
三、大衍之数勾股解
四、大衍之数与占筮的性质和数学有关
第三节筮法程序、卦序和演卦中的数学
一、筮法程序中的数学
二、卦序中的数学
三、演卦中的数学
四、简短的评论
第二章演易新法
第一节爻群(爻式)演卦法
一、京房的八宫卦变
二、《周易》的太极原理
三、爻群(爻式)的特殊结构
第二节易矩阵研究
一、经典易矩阵理论述评
二、易矩阵理论的建构
三、邵雍演卦法的矩阵表示
第三节爻群的矩阵结构
一、易矩阵的本质
二、伏羲爻群的另一种表示方法
三、奇偶演卦法的矩阵表示
四、爻群的矩阵结构
五、满卦矩阵的爻群构造法
第三章易卦新证
第一节爻群的数学本质
一、加一倍法:经典演易理论新解
二、爻群演卦法:现代演易理论简介
第二节关于一个演易定理的数学证明
一、Gray码及其性质
二、演易爻群的数学本质:Walsh函数及其生成
三、演易定理及其证明
第三节完备的易卦演绎定理及其证明
一、Walsh函数的定义及性质
二、Walsh函数新应用:区组设计
三、Walsh函数、区组设计与演易
四、Walsh函数与加强演易定理
第四章易数新知
第一节爻群变序研究
一、爻群变序与易数
二、变序数列与变序卦群
三、变序与置换
四、变序规则的交比不变性
第二节八宫数论与爻群的构造
一、八宫矩阵与爻群的构造
二、八宫矩阵与沃尔什奇函数
三、完美的十六元变序爻群
第三节典型八卦次序的数学统一性
一、文献记载的经典八卦卦序举要
二、可表为数学函数式的八卦卦序
第五章变卦新解
第一节先天八卦方位图与周期对称函数
一、周期对称函数的性质
二、实例分析
第二节易卦的向量表示及其变换
一、易卦的数学内涵
二、易卦的向量表示
三、易向量的变换
四、对角矩阵:变卦的变换算子
第三节6阶算子:六十四卦的变换
一、不倒覆、只变号变换(主对角矩阵)
二、先倒覆、后变号变换(副对角矩阵)
三、对卦变换(Ⅰ型):上卦倒覆、下卦正置变换
四、对卦变换(Ⅱ型):下卦倒覆、上卦正置变换
第六章序卦新论
第一节今本《周易》卦序结构及其演绎
一、今本《周易》卦序的结构分析
二、今本《周易》卦序的演绎生成
三、讨论:关于特区A和B在今本《周易》卦序中的地位
第二节今本《周易》卦序排列数学规律初探
一、序卦及其卦序编码
二、序卦分布的基本规律
第三节今本《周易》卦序排列数学规律再探
一、再论一阴五阳卦分布律
二、再论三阴三阳卦分布律
三、试论十二辟卦分布律
四、序卦分布容斥律
第四节今本《周易》卦序排列数学规律i探
一、一类特殊的简单数列及其通项的数学表示
二、序卦布排的数列规律及其通项表示
三、序卦布排的统合原理
四、卦序数理的进一步探究
第五节今本《周易》序卦、杂卦分布规律坐标几何通解
一、杂卦及其卦序编码
二、三十六格棋盘与河洛七七方阵图的构建
三、直线的艺术:《序卦》卦序平面几何图解
四、平面的创造:《杂卦》卦序立体几何图解
五、讨论
参考文献
索引

table of Contents
The first chapter explores the number of elephants
The first quarter is what is easy
One, easy to count
Second, easy to set is a group
Third, easy to set is a geometric model
Fourth, easy to set is binomial
V. Easy to collect and collect
Sixth, easy and matrix
Seven, easy-to-use and algebraic domains
The second part of the mathematical connotation of the number of students
First, the meaning of the number of major
Second, the number of major differences is the number of mutual multiplication
Third, the number of major gouache solution
4. The number of major differences is related to the nature and mathematics of divination.
Section III. Mathematics in Defamation Process, Order and Deduction
One, mathematics in the law of defamation
Second, the sequence of mathematics
Third, the interpretation of mathematics
Four, brief comments
The second chapter of the new law
The first section of the 爻 group (爻式) deduction method
I. The Eighth Palace Transmutation in Beijing
Second, the “Book of Changes” Tai Chi principle
Third, the special structure of the group
The second section of the matrix study
First, review of the classic matrix theory
Second, the construction of the matrix theory
Third, matrix representation of Shao Shao deduction method
Section III The Matrix Structure of the Quail Group
First, the nature of the matrix
Second, another way of expressing Fuxi Group
Third, the matrix representation of the parity deduction method
Fourth, the matrix structure of the group
Fifth, the ensemble group structure method
The third chapter is easy new certificate
Section 1 The Mathematical Essence of Qun Group
One, plus twice: a new solution to the theory of classical music
Second, the group deduction method: Introduction to modern theory
Section II Mathematical Proof of a Relevant Theorem
I. Gray code and its properties
Second, the mathematical nature of Yan Yiqun: Walsh function and its generation
Third, the recurrence theory and its proof
The Complete and Easy Interpretation of the Third Section Theorem and Its Proof
First, the definition and nature of the Walsh function
Second, the new application of Walsh function: block design
Third, Walsh function, block design and performance
Fourth, Walsh function and strengthen the relativity theory
The fourth chapter is the number of new knowledge
Section 1 Study on the Order of Groups
First, group order and number
Second, the order of the sequence and order group
Third, the order and replacement
Fourth, the invariance of cross ratio rules
The Second Section of Eighth Palace Number Theory and the Structure of Dai Group
The Structure of One and Eight Palaces and the Group
The two-octagon matrix and the Walsh function
Three, perfect sixteen yuan order group
The mathematical unity of the typical gossip sequence in the third quarter
First, the documentary records of the classic gossip sequence
Second, the table can be expressed as a mathematical function
The fifth chapter changes the new solution
Section 1 Intrinsic figure and periodic symmetry function
First, the nature of the periodic symmetry function
Second, the case analysis
The second section of the easy vector representation and its transformation
First, the easy mathematical connotation
Second, easy vector representation
Third, the transformation of the easy vector
IV. Diagonal matrix: transform operator
Section 6 6-order Operators: Sixty-four Shifts
One, no overturning, only change sign (main diagonal matrix)
Second, first inverted, post-transformation (subdiagonal matrix)
Third, pair transformation (I type): upside down, upside down transformation
Fourth, confrontation transformation (type II): squat down, upside down
Chapter 6: New Theory of Order
The first section of the current “Book of Changes” sequence structure and its interpretation
First, the structural analysis of this “Book of Changes” order
Second, today’s “Book of Changes” sequence deduction generation
III. Discussion: The status of SAR A and B in the current “Book of Changes” preface
A Preliminary Study on the Arrangement of Mathematical Rules in the Second Section of Today’s Book of Changes
First, sequence and sequence code
Second, the basic rules of order distribution
The Third Quarter: Revisiting the Mathematical Rules of the Book of Changes
First, discuss the distribution law of Yin and Wuyang
Second, discuss the distribution law of Sanyin Sanyang
Third, on the distribution law of the twelve rumor
IV. Ordinal Disposition Distribution
The fourth quarter of this book “Book of Changes” arranges the mathematics law
A mathematical representation of a special simple sequence and its general terms
Second, the order of the layout of the law and its general terms
Third, the principle of integration of sequence layout
Fourth, the further study of order and order
Section 5: The Coordinate Geometric Solution to the Distribution Rules of Preface and Miscellaneous in Zhouyi
First, hybrid and its code sequence
The construction of two, thirty-six grid checkerboard and Helu seventy-six square chart
Third, the art of straight lines: “Preface and Postscript”
Fourth, the creation of the plane: “mixed mantis” order three-dimensional geometric illustration
V. Discussion
references
index

Share This Book

Similar Titles

"I read my eyes out and can’t read half enough... The more one reads the more one sees we have to read." - John Adams

(I Ching under the perspective of Mathematics and Science - The Series of I Ching Study under Transdisciplinary perspectives) 数理视野下的易学(精)/跨学科视野下的易学丛书

Author: 王俊龙
Pages: 192
Category: Mathematics 數學 道象理數 算術
Publisher: South China University of Technology Press
Publication Date: 2017
Finished? No
Signed? No
First Edition? No

Purchase this title at:

Description
王俊龙著的《数理视野下的易学(精)》从数理的视野解读演易新法、易卦新证、易数新知、变卦新解和《序卦》新论,使易学成为当代知识体系中一个组成部分,使得易卦数理在现代科学中的主导地位而显得尤为突出。具体包括第一章象数新探,第二章演易新法,第三章易卦新证,第四章易数新知,第五章变卦新解,第六章序卦新论。 目录 第一章象数新探 第一节易卦是什么 一、易卦是数 二、易卦集是群 三、易卦集是几何模型 四、易卦集是二项式 五、易卦与集合 六、易卦与矩阵 七、易卦与代数域 第二节大衍之数的数学内涵 一、大衍之数的含义 二、大衍之数是互乘之数 三、大衍之数勾股解 四、大衍之数与占筮的性质和数学有关 第三节筮法程序、卦序和演卦中的数学 一、筮法程序中的数学 二、卦序中的数学 三、演卦中的数学 四、简短的评论 第二章演易新法 第一节爻群(爻式)演卦法 一、京房的八宫卦变 二、《周易》的太极原理 三、爻群(爻式)的特殊结构 第二节易矩阵研究 一、经典易矩阵理论述评 二、易矩阵理论的建构 三、邵雍演卦法的矩阵表示 第三节爻群的矩阵结构 一、易矩阵的本质 二、伏羲爻群的另一种表示方法 三、奇偶演卦法的矩阵表示 四、爻群的矩阵结构 五、满卦矩阵的爻群构造法 第三章易卦新证 第一节爻群的数学本质 一、加一倍法:经典演易理论新解 二、爻群演卦法:现代演易理论简介 第二节关于一个演易定理的数学证明 一、Gray码及其性质 二、演易爻群的数学本质:Walsh函数及其生成 三、演易定理及其证明 第三节完备的易卦演绎定理及其证明 一、Walsh函数的定义及性质 二、Walsh函数新应用:区组设计 三、Walsh函数、区组设计与演易 四、Walsh函数与加强演易定理 第四章易数新知 第一节爻群变序研究 一、爻群变序与易数 二、变序数列与变序卦群 三、变序与置换 四、变序规则的交比不变性 第二节八宫数论与爻群的构造 一、八宫矩阵与爻群的构造 二、八宫矩阵与沃尔什奇函数 三、完美的十六元变序爻群 第三节典型八卦次序的数学统一性 一、文献记载的经典八卦卦序举要 二、可表为数学函数式的八卦卦序 第五章变卦新解 第一节先天八卦方位图与周期对称函数 一、周期对称函数的性质 二、实例分析 第二节易卦的向量表示及其变换 一、易卦的数学内涵 二、易卦的向量表示 三、易向量的变换 四、对角矩阵:变卦的变换算子 第三节6阶算子:六十四卦的变换 一、不倒覆、只变号变换(主对角矩阵) 二、先倒覆、后变号变换(副对角矩阵) 三、对卦变换(Ⅰ型):上卦倒覆、下卦正置变换 四、对卦变换(Ⅱ型):下卦倒覆、上卦正置变换 第六章序卦新论 第一节今本《周易》卦序结构及其演绎 一、今本《周易》卦序的结构分析 二、今本《周易》卦序的演绎生成 三、讨论:关于特区A和B在今本《周易》卦序中的地位 第二节今本《周易》卦序排列数学规律初探 一、序卦及其卦序编码 二、序卦分布的基本规律 第三节今本《周易》卦序排列数学规律再探 一、再论一阴五阳卦分布律 二、再论三阴三阳卦分布律 三、试论十二辟卦分布律 四、序卦分布容斥律 第四节今本《周易》卦序排列数学规律i探 一、一类特殊的简单数列及其通项的数学表示 二、序卦布排的数列规律及其通项表示 三、序卦布排的统合原理 四、卦序数理的进一步探究 第五节今本《周易》序卦、杂卦分布规律坐标几何通解 一、杂卦及其卦序编码 二、三十六格棋盘与河洛七七方阵图的构建 三、直线的艺术:《序卦》卦序平面几何图解 四、平面的创造:《杂卦》卦序立体几何图解 五、讨论 参考文献 索引 table of Contents The first chapter explores the number of elephants The first quarter is what is easy One, easy to count Second, easy to set is a group Third, easy to set is a geometric model Fourth, easy to set is binomial V. Easy to collect and collect Sixth, easy and matrix Seven, easy-to-use and algebraic domains The second part of the mathematical connotation of the number of students First, the meaning of the number of major Second, the number of major differences is the number of mutual multiplication Third, the number of major gouache solution 4. The number of major differences is related to the nature and mathematics of divination. Section III. Mathematics in Defamation Process, Order and Deduction One, mathematics in the law of defamation Second, the sequence of mathematics Third, the interpretation of mathematics Four, brief comments The second chapter of the new law The first section of the 爻 group (爻式) deduction method I. The Eighth Palace Transmutation in Beijing Second, the "Book of Changes" Tai Chi principle Third, the special structure of the group The second section of the matrix study First, review of the classic matrix theory Second, the construction of the matrix theory Third, matrix representation of Shao Shao deduction method Section III The Matrix Structure of the Quail Group First, the nature of the matrix Second, another way of expressing Fuxi Group Third, the matrix representation of the parity deduction method Fourth, the matrix structure of the group Fifth, the ensemble group structure method The third chapter is easy new certificate Section 1 The Mathematical Essence of Qun Group One, plus twice: a new solution to the theory of classical music Second, the group deduction method: Introduction to modern theory Section II Mathematical Proof of a Relevant Theorem I. Gray code and its properties Second, the mathematical nature of Yan Yiqun: Walsh function and its generation Third, the recurrence theory and its proof The Complete and Easy Interpretation of the Third Section Theorem and Its Proof First, the definition and nature of the Walsh function Second, the new application of Walsh function: block design Third, Walsh function, block design and performance Fourth, Walsh function and strengthen the relativity theory The fourth chapter is the number of new knowledge Section 1 Study on the Order of Groups First, group order and number Second, the order of the sequence and order group Third, the order and replacement Fourth, the invariance of cross ratio rules The Second Section of Eighth Palace Number Theory and the Structure of Dai Group The Structure of One and Eight Palaces and the Group The two-octagon matrix and the Walsh function Three, perfect sixteen yuan order group The mathematical unity of the typical gossip sequence in the third quarter First, the documentary records of the classic gossip sequence Second, the table can be expressed as a mathematical function The fifth chapter changes the new solution Section 1 Intrinsic figure and periodic symmetry function First, the nature of the periodic symmetry function Second, the case analysis The second section of the easy vector representation and its transformation First, the easy mathematical connotation Second, easy vector representation Third, the transformation of the easy vector IV. Diagonal matrix: transform operator Section 6 6-order Operators: Sixty-four Shifts One, no overturning, only change sign (main diagonal matrix) Second, first inverted, post-transformation (subdiagonal matrix) Third, pair transformation (I type): upside down, upside down transformation Fourth, confrontation transformation (type II): squat down, upside down Chapter 6: New Theory of Order The first section of the current "Book of Changes" sequence structure and its interpretation First, the structural analysis of this "Book of Changes" order Second, today's "Book of Changes" sequence deduction generation III. Discussion: The status of SAR A and B in the current "Book of Changes" preface A Preliminary Study on the Arrangement of Mathematical Rules in the Second Section of Today's Book of Changes First, sequence and sequence code Second, the basic rules of order distribution The Third Quarter: Revisiting the Mathematical Rules of the Book of Changes First, discuss the distribution law of Yin and Wuyang Second, discuss the distribution law of Sanyin Sanyang Third, on the distribution law of the twelve rumor IV. Ordinal Disposition Distribution The fourth quarter of this book "Book of Changes" arranges the mathematics law A mathematical representation of a special simple sequence and its general terms Second, the order of the layout of the law and its general terms Third, the principle of integration of sequence layout Fourth, the further study of order and order Section 5: The Coordinate Geometric Solution to the Distribution Rules of Preface and Miscellaneous in Zhouyi First, hybrid and its code sequence The construction of two, thirty-six grid checkerboard and Helu seventy-six square chart Third, the art of straight lines: "Preface and Postscript" Fourth, the creation of the plane: "mixed mantis" order three-dimensional geometric illustration V. Discussion references index
Notes
HK$ Donated by:

The Informal History of the Science and Civilization in China (The History of Science and Technology in China: A collection of topical papers) 中国科学技术史稿(修订版) (Chinese Edition) ISBN:9787301200018

DO NOT DELETE

第四章古代科学技术体系的形成
Chapter 4 Formation of Ancient Science and Technology System

  • 五、数学体系的形成
  • 六、地图测绘技术与疆域地理志
  • 七、医药学体系的充实与提高
  • 5. Formation of Mathematical System
  • 6. Map Surveying and Mapping Technology and Territory Geography

第六章 Chapter 6

  • 六、算经的注释和数学的发展
    6. The development of nine arithmetical notes and the development of mathematics.
  • 十、中医药学的进步
    10.The progress of Traditional Chinese medicine

第七章古代科学技术发展的高峰

  • 4、七数学的辉煌成就
    4. the peak of the development of ancient science and technology.

第八章传统科学技术的缓慢发展
Chapter 8 Slow Development of Traditional Science and Technology

  • 七、商业数学与珠算
    7 Business Mathematics and Abacus

Share This Book

Similar Titles

"It doesn't matter who you are or what you look like, so long as somebody loves you." - Roald Dahl, The Witches

The Informal History of the Science and Civilization in China 中国科学技术史稿(修订版) (Chinese Edition)

Author: 杜石然
Pages: 464
Category: Science and Civilization in China 中國科學技術史
Publisher: 北京大学出版社
Publication Date: 2012
Finished? No
Signed? No
First Edition? No

Purchase this title at:

Description
《中国科学技术史稿(修订版)》是中国科学院自然科学史研究所组织骨干力量,由杜石然先生领衔用三年时间编写的一部中国科学技术通史的经典著作。数十位中国科学史界的顶级人物参与了本书的编写或为本书编写提供了资料和修改意见。本书是集体智慧结晶,由名家执笔、精心雕琢,书中内容详而不繁,约而不漏,论述严谨。本书1982年由科学出版社出版。出版以来一直是大学“中国科学技术史”的指定教材和优秀普及读物。本书多次重印,并被译成日文由东京大学出版部出版发行。现在重新出版这部著作,对于普及科学知识、弘扬中国传统科技文化都将起到积极的作用。本书可以作为本科生选修课“中国科技史”的教材,也可作为科技史专业的研究生教材和中国传统科技文化普及读物。
Notes
HK$ Donated by:

Celestial Creations (Graphic Classics 16) – The Illustrated Encyclopaedia of Ancient Chinese Technology (Chinese Edition) 图解天工开物 ISBN: 9787544238755

DO NOT DELETE

Share This Book

Similar Titles

"Appear weak when you are strong, and strong when you are weak." - Sun Tzu, The Art of War

Graphic Havenly Creations (Graphic Classics 16) - Ancient Chinese Technology Daquan(Chinese Edition) 图解天工开物

Author: (MING )SONG YING XING 宋应星
Pages: 511
Category: Science and Civilization in China 中國科學技術史
Publisher: Nanhai Publishing Company 南海
Publication Date: 2007
Finished? No
Signed? No
First Edition? No

Purchase this title at:

Description
本书成书于400年前,是系统介绍古代中国农业、工业、手工业的一部集大成之作。以系统的、统计的方式记录了迄于明代为止的古中国重要的农业和手工业生产,并配有大量精美的图片。
Notes
HK$ Donated by:

Yin and Yang of Mathematics and its applications in medicine (Traditional Chinese Medicine) (paperback) 阴阳五行数学及其在中医学上的应用 ISBN: 9787030195227

DO NOT DELETE

Share This Book

Similar Titles

"It's much better to do good in a way that no one knows anything about it." - Leo Tolstoy, Anna Karenina

yin and yang of Mathematics and its applications in medicine (Traditional Chinese Medicine) (paperback) 阴阳五行数学及其在中医学上的应用

Author: MENG KAI TAO 孟凯韬
Pages: 331
Category: Mathematics 數學 道象理數 算術
Publisher: 科学
Publication Date: 1991
Finished? No
Signed? No
First Edition? No

Purchase this title at:

Description
国家攀登计划特别支持项目国家重大基础研究前期研究专项支持项目国家重点基础研究发展计划(“973”计划)支持项目; 《阴阳五行数学及其在中医学上的应用》适合中医、哲学和数学专业的在校大学生和教师阅读,也适合中医爱好者阅读。阴阳五行数学是哲理数学的分支学科。《阴阳五行数学及其在中医学上的应用》论及阴阳五行数学的基本理论及其在中医学,特别是辨证论治中的应用。其中的数十个定理是根据从阴阳五行的特征抽象出的3个公理严格推导出来的。这些定理破解了中医界几千年悬而未解的理论之谜。由其中一些定理所推出的阴阳五行生理和病理公式揭示出入体生理和病理活动的普遍规律。由之不仅可以对中医的治疗方法进行严格的数学论证,从而从逻辑检验的角度证明中医治疗方法的科学性或对不完善者揭示出完善的途径;而且可以反推出中医经典处方并判断其是否完善和对不完善者揭示出完善的途径,从而为中医的创新开辟一条道路。这种用公式推导处方的方法将东方的整体思维与西方的分析思维相结合,将中医的理、法、方、药熔于一炉,不仅使中医变得容易理解,而且可以和计算机结合,使辨证论治规范化和现代化成为可能,使中医学有可能成为具有现代科学特征的科学。书中列举反推经典处方的实例100个,涉及经典处方109则。 The "Yin and Yang Five Elements Mathematics and Its Application in Traditional Chinese Medicine" is suitable for college students and teachers of Chinese medicine, philosophy, and mathematics. It is also suitable for Chinese medicine enthusiasts to read. The yin and yang five-element mathematics is a branch of philosophy mathematics. "Yin and Yang Five Elements Mathematics and Its Application in Traditional Chinese Medicine" discusses the basic theories of yin and yang and the five elements of mathematics and their application in traditional Chinese medicine, especially syndrome differentiation. Dozens of theorems are strictly derived from the three axioms abstracted from the features of Yin-Yang and Five Elements. These theorems break the mystery of the unresolved theory for thousands of years in the Chinese medicine community. The physiology and pathology of yin and yang, which were introduced by some of these theorems, reveals the general laws of physiology and pathology of the body. Therefore, it is not only possible to conduct strict mathematical argumentation on the treatment of traditional Chinese medicine, thus demonstrating the scientificity of the treatment of traditional Chinese medicine from the point of view of logic testing, or revealing perfect ways for the imperfect; it is also possible to reverse the introduction of traditional Chinese medicine prescriptions and determine whether it is Perfecting and revealing perfect ways for imperfect people to open up a path for innovation in Chinese medicine. This method of deducing prescriptions using formulas combines eastern thinking with western analytical thinking, and melts the principles, methods, prescriptions, and medicines of traditional Chinese medicine in a furnace. This not only makes Chinese medicine easier to understand, but also integrates with computers. It is possible to standardize and modernize syndrome differentiation and treatment, so that Chinese medicine may become a science with modern scientific characteristics. The book lists 100 examples of reflexive classic prescriptions, involving classic prescriptions 109.
Notes
HK$ Donated by:

Mathematical Acupuncture Theory 數學針灸論 01: Introduction 導論 by Kent PALMER 2017

Featured

PALMER, K. (2016) Mathematical Acupuncture Theory 01: Introduction https://www.academia.edu/34653337/Mathematical_Acupuncture_Theory_01_Introduction In: . Presented at the Holonomic Medicinal Theory, Academia.edu, USA. Comments: http://www.yinyangbalance.asia/blog/mathematical-acupuncture-theory-01-introduction-by-kent-palmer/2801/.

古法七椉方圖 The Chinese Pascal Triangle

Pascal tetrahedron 帕斯卡四面體 立體古法七椉方圖

Third Dimension platonic solids 3D 柏拉圖立體(三維等邊立體)

Forth Dimension Platonic solid 4D 柏拉圖立體(四維等邊立體)。Pentachoron 四面體 = Five Hsing (Wu Xing) 五行結構!

Abstract: In this paper will be presented a theory of Acupuncture based on mathematics. The main claim of this paper is that the Chinese originally developed Acupuncture Therapy on the basis of Higher Dimensional Mathematics. Acupuncture Medicine is based first and foremost on the Mathematics of higher dimensions and the synergies of the polytopes of the higher dimensions from Three to Nine. We follow B. Fuller 巴克敏斯特·富勒and extend his Synergetics (協同理論) to study higher dimensional polytopes. We find in them the foundations of Acupuncture Theory. We apply insights from Special Systems Theory(特殊系統論), and Schemas Theory(模式論)in order to understand Acupuncture Theory better. We also apply ideas based on the Emergent Meta-system (湧現景觀系統?)and we connect those to the Japanese Game of Go (Wei Qi 圍棋in China) which like Acupuncture was developed in Ancient China. We construct a top down model of the Architecture of Acupuncture based on the structures of the Three through Seven dimensional polytopes. We target the understanding of Acupuncture as it appears in the Yellow Emperors Classic (黃帝內經)on Acupuncture as the original source of Acupuncture Medical practice with some sparing reference to later works as necessary. The purpose is to explain how Acupuncture Theory obtained its original structure and to explain its efficacy based on that structure.

本文將介紹一種基於數學的針灸理論。內容主要討論中國人最初在高維數學的基礎上開創的針灸療法。針灸醫學的首要基礎在於高維數學及三維到九維多面體的協同作用。我們追從巴克敏斯特·富勒並延伸他的協同理論去研究更高維的多面體。在其中我們找到了針灸理論的基礎。我們運用特殊系統論及模式論的見解,去更清楚領悟針灸理論。我們也採用湧現景觀系統的思維,並將這些思維與圍棋聯繫起來。與針灸一樣,圍棋亦源於中國古代。我們運用三維到七維多面體的結構,去打造一個由上而下的針灸結構模型。我們的目標是根據黃帝內經經典中的記載,去明白最早期的針灸療法,並在必要時參考一些後期著作。目的乃在於考究針灸理論的起源,及解釋其始創結構的功效

Advanced Chinese Acupuncture Theory 05: A Comparison of the Chinese and Western Worldviews by Kent PALMER

PALMER, K. (2016) Advanced Chinese Acupuncture Theory 05: A Comparison of the Chinese and Western Worldviews https://www.academia.edu/34635963/Advanced_Chinese_Acupuncture_Theory_05_A_Comparison_of_the_Chinese_and_Western_Worldviews In: . Presented at the Holonomic Medicinal Theory, Academia.edu, USA. Comments: http://www.yinyangbalance.asia/blog/advanced-chinese-acupuncture-theory-05-a-comparison-of-the-chinese-and-western-worldviews-by-kent-palmer/2821/.

Advanced Chinese Acupuncture Theory 04: A View of the Chinese Worldview based on the WorldSoul by Kent PALMER

PALMER, K. (2016) Advanced Chinese Acupuncture Theory 04: A View of the Chinese Worldview based on the WorldSoul https://www.academia.edu/34594612/Advanced_Chinese_Acupuncture_Theory_04_A_View_of_the_Chinese_Worldview_based_on_the_WorldSoul In: . Presented at the Holonomic Medicinal Theory, Academia.edu, USA. Comments: http://www.yinyangbalance.asia/blog/advanced-chinese-acupuncture-theory-04-a-view-of-the-chinese-worldview-based-on-the-worldsoul-by-kent-palmer/2817/.

Advanced Chinese Acupuncture Theory 03: by Kent PALMER

PALMER, K. (2016) Advanced Chinese Acupuncture Theory 03: In: . Presented at the Holonomic Medicinal Theory, Academia.edu, USA. http://www.yinyangbalance.asia/blog/advanced-chinese-acupuncture-theory-03-by-kent-palmer/2812/.

Advanced Chinese Acupuncture Theory 02: Original Architectural Design of Acupuncture Theory by Kent PALMER

PALMER, K. (2016) Advanced Chinese Acupuncture Theory 02: Original Architectural Design of Acupuncture Theory https://www.academia.edu/34580250/Advanced_Chinese_Acupuncture_Theory_02_Original_Architectural_Design_of_Acupuncture_Theory In: . Presented at the Holonomic Medicinal Theory, Academia.edu, USA. Comments: http://www.yinyangbalance.asia/blog/advanced-chinese-acupuncture-theory-02-original-architectural-design-of-acupuncture-theory-by-kent-palmer/2809/.

Advanced Chinese Acupuncture Theory 01: A Mathematical Approach to How Acupuncture Works by Kent PALMER

PALMER, K. (2016) Advanced Chinese Acupuncture Theory 01: A Mathematical Approach to How Acupuncture Works https://www.academia.edu/34499861/Advanced_Chinese_Acupuncture_Theory_01_A_Mathematical_Approach_to_How_Acupuncture_Works In: . Presented at the Holonomic Medicinal Theory, Academia.edu, USA. Comments: http://www.yinyangbalance.asia/blog/advanced-chinese-acupuncture-theory-01-a-mathematical-approach-to-how-acupuncture-works-by-kent-palmer/2804/.