A PACKET DISCARD STRATEGY FOR CONGESTION CONTROL IN ATM DATA NETWORKS

CHAPTER 3
(QUEUEING ANALYSIS

ror THE M!*//D/1 QuEeuE

In this chapter, we present the analysis of the M[*1/D/1/0 queue, i.c. the
M/D/1 queue with group arrivals and unlimited buffer. The analysis forms the

basis for investigating the variants of the queue. The variants, namely the M[*1/D/1
queue with threshold and the M(*1/D/1/B queue, are used to model the
performance of an ATM switch operating with the PDS and with the Cell Discard
Strategy respectively. Here, we outline the necessary techniques for the modelling
and analysis. An algorithm is also established to calculate the equilibrium queue |

occupancy distribu't'ion at an arbitrary instant for the M (x}/D/1/% queue.

The approach to calculate the distribution for the M /D/1 queue with no group
arrivals would be to study the imbedded Markov chain to yield the equilibrium
distribution for the number of customers left behind by a departing customer. This

distribution in turn would be equal to that of at an arbitrary time [10](pp 176).
However, in the case of group arrivals, the distribution at a departure instant is not
equal to that of at an arbitrary instant. Fortunately though, they are related through the
distribution of backward recurrence time to the most recent departure. The
relationship may be obtained by comparing the results of the method of imbedded
Markov chain and the method of supplementary variables. The latter method
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provides the equilibrium distribution for the number of customers at an arbitrary

instant.

In Section 3.1, we describe the M/D/1 queue with group arrivals. In Section 3.2,
we use the method of imbedded Markov chain to obtain the distribution of the

number of cells left behind by a departing cell. In Section 3.3, the method of
supplementary variables is used to obtain the equilibrium probability distribution for
the number of cells at an arbitrary time. Also explored in this section is the
relationship between the equilibrium probability distribution for the number of cells
left behind by a departing cell and that for the number of cells at an arbitrary time. In
Section 3.4, an algorithm is given to calculate the required distributions. Finally in

Section 3.5, we summarize the chapter.

3.1 Queue Description

The M[*1/D/1 queue is a variant of the M/D/1 queue in that in the former a
group of customers is allowed to arrive at each arrival instant whereas in the latter
only one customer fnay arrive at a given instant. Group arrivals occur according t:: a
Poisson process. The number of customers contained in each group is independent of
the arrival process. l:’urthennore, group sizes are independent and identically
distributed according to a specified distribution. Customers in a group are then served
one by one. Such a queue is considered in [10](pp 235), [11](pp 44-51) and [13](pp
385-387). A group of customers may also be referred to as a batch of customers. In

this document, these terms are used interchangeably.

In this section, we first describe the arrival process involving group arrivals. Next, we
consider two basic event sequences that typically characterize the behaviour of the
queue. Then, we explore the relationship between the arrival process and the service

process.
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In exploring the relationship between the arrival process and the service process, we
first look at the distribution for the number of arrivals during a service period. We
then consider the distribution for the number of customers left behind at the end of

the first service period which initiates a busy period.

3.1.1 Group Arrival Process

Let A be the average arrival rate of groups and ¥ be the time required for serving one
customer. Let G be the random variable representing the size of a group and g; be
the probability that the group size G is i, where i = 1,2, .... Let G(z) and g be the
probability generating function (PGF) and the mean of the group size, respectively.

Then, we have

g; =P[G=1i], o))

G)= Y 82k, )
k=1

8 =E[G] =G’'(1). &)

Recall that in a single server queue, the server utilization, p, is the product of the
average arrival rate of customers and the average service time. In this particular case,
the average arrival rate of customers is the product of the average arrival rate of
groups and the average group size. Thus, the server utilization for this queue is

defined as

p = A%g. @

3.1.2 Basic Event Sequences

Next, we consider two basic event sequences that typically characterize the behaviour

of the queue. In the subsequent discussion, let C, denote the n™ customer to enter
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the queue and define the following random variables: X, to represent the service time
for C,,; t, to indicate the departure instant of C,; g, to denote the number of
customers left behind by the departure of C, from service; and finally v, torepresent

the number of customers arriving during the service of C,, .

The first event sequence refers to the case where the service of a customer, Ci 1
immediately follows that of another, C,,, as shown in Figure 3.1. This situation
necessarily requires the number of customers left behind by the departure of C, is
always greater than zero, thatis ¢, > 0 . Consequently, the number of customers left
behind by the departure of C,, , ; may be calculated as that of C, less 1 (departing

customer) plus the number of customers arrive during the service interval %,, , | and

can be expressed as

qn>0 = qn+l=qn"1+vn+l' )

Figure 3.1: Sequence of events within a service period within a busy period

C" Cn+ 1 !

dn left x
" . nt]l e—p qn-q.l left
behind it

Server
P time —>
n n+l
|

t sequence refers to the case where the service of a customer, Cp, 15

another, C,, by an idle period, as illustrated in Figure 3.2.
e number of customers left behind by the departure
, 1 is the first customer of

The second even
is separated from that of

This situation results whenever th
of C, is equal to zero, thatis ¢, = 0. Noting that then C,,
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the group of size G to be served, the number of customers left behind by the
departure of C,, ; is equal to the number of customers arrive during its service plus

the rest of the group each of those customers has arrived with and can be expressed as

qn=0 = qn+1=vn+l+G_1' 6

Figure 32: Sequence of events during the initiation of a busy period

q, = 0 C" Cn+l
zero customer ld!eod Xpel A+l Left
: Il n+
Server Jet3-beliing - behind
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F:n Fn +1 ,
Queue '
" C" ’ Fcn +1 [ ,
; l T 1
a group ) .
of size G _Cn + G_J Va+1

!

We recall that the arrival process is independent of the number of customers in t};e
queue. Similarly, X, is independent of n and is constant. Therefore, v,, the number
of arrivals during the service time %, depends only upon the duration ¥ and not upon

n at all. We may therefore dispense with the subscripts on v, and X, , replacing them

with the random variables v and X.

3.1.3 Arrivals during a service period

Let N represent the number of group arrivals in a service period of length X. With

Poisson arrivals, we have

=\k
PN = k] = L%)-e-“ for k = 0,1,2,...
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where A is the average group arrival rate. Consequently, the number of customers
arrives in a service period of length X is given by

V=Gl+Gz+...+GN (8)

where G ; represents the number of customers in the j*# group that arrives in the
service period. That is, the number of customer arrivals in one service period is equal

to a random sum of the random variables each representing a group size distribution.

Let o, denote the probability that the number of customers which arrives in a service

period of length x is equal to k. That is,

o, = P[v = k]. ©)

Note that, the event of no customer arrivals is equivalent to the event of no group

arrivals. Therefore, we have

ay = P[N =0] = e™* (10)

”

where we make use of (7). For k£ 2 1, that is when there is at least one arrival, we can

express o, as

k
o = E P[v =k|N =n]P[N = n] (11)

n=1]

where we have applied the total probability theorem by conditioning v upon the

number of groups which have arrived. Note that, v = k may consist of k groups,
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each of size one. Similarly, it may consist of only one group of size k. Accordingly,

by letting

8/(:') = £k®gk® .. Qg

]

n times (12)

denote the n-fold convolution of g;, we have

Plv=k[N =n] = P[G,+Gy+Gy+..+G, = k] = g{” (13)

as given in [10](pp 375-377) for any sum of independent and identically distributed

random variables. Furthermore, g,(t") can be recursively calculated as

(1)

8k = 8k
k-1
g” = Y s&i n>1
i=1 (14)

which is also given'in [14](pp 133). Next, substituting (13) and (7) into (11), we get
: (Ax)" (n)
= —;z—!—e'ugt k21.
n=1 (15)

Finally, the probability generating function of v, V(z), is derived in Appen@ix A for

a general service time distribution. For the case of constant service period X, it

reduces to

V)m Y Py = K]zt = e 000,
k=0
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3.1.4 Arrivals at the start of a busy period

As illustrated in Figure 3.2, the number of customers left behind by the first customer
served at the start of a busy period, not only contains the customers that arrived

during its service period but also contains the rest of the customers within its group.

Let B, be the probability that the number of customers left behind by the departure of
the first customer, whose group initiated a busy period, is equal to k. Namely,

By = P[v+G-1=k] an

Then B, can be expressed as

k+1
By = Y Plv=k-m+1|G=m]P[G=m]

m=1

k+1

Z 8m%k-m+1 ‘;f
m=1]1 2 (18)

where we conditioned v upon the size of the group which initiates a busy period.
Note that, the minimum size of the group that initiates a busy period must be one for

all values of k and it cannot exceed k + 1 forv+G-1=k.

3.2 Queue Occﬁpancy Distribution at Departure Instants

equilibrium distribution for the number of
er is to establish a relationship between

The traditional way of determining the
customers left behind by a departing custom

successive departure instants and exploit that relationship to obtain the probability

generating function of the required distribution.
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Although the probability generating function of the distribution provides the
necessary information in a closed form, it may not be suitable for efficient calculation
of numerical probabilities. Instead, in numerically calculating the required
distribution, the state transition probabilities may equivalently be used to make use of
the special structure common to all the M/G/1 type stochastic matrices. The latter

approach requires the probability of having an empty queue at departure instants
which is readily available from the former method.

Hence, in this section, we first derive the probability generating function of the
equilibrium queue occupancy distribution at departure instants. Next, we determine
the probability of having an empty queue at customer departures. Then we examine
the structure of the transition probability matrix and specify an algorithm for

calculating stationary probabilities in a recursive manner.
3.2.1 Probability generating function of the distribution

In Section 3.1, we have established the fundamental equations (5) and (6) that

)

typically characterize the behaviour of the queue. Here, we combine those equatibns
as

dn+1 =qn'Aqn+Vn+1+(1_Aqn)(G-1) (19)
where
Ak =1 k>0
=0 k<0 20)
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Next, we define the probability generating function for the random variable q, as

e

= ”'4'*-‘-“ : N & e

Qd(z) = E[z%] = ): P(q, = k]zt @21)
k=0

g

i

and that for the limiting random variable ¢ = lim g, as

n—

T S

Q4(z) = lim Qd(z) = E[z9) = Y dyt @
n— o
k=0
where d, denotes the equilibrium probability that a departure leaves k customers ;
|
behind, namely i

d, = P[q =k]. 23) E
tl

By applying the definition given in (21) to the random variable ¢,, , ; , we have

Qd 1(2) = E[zq.-Aq.+V.,.+(l-Aq_)(G-l)] }(24)
n+ _

I
i

the number of customers that arrive during the /
is independent of the number of

where we make use of (19). Note that

service period of the (n + 1)st customer, V1
departure, 4, . Therefore, we can rewrite (24)

customers in the system at the previous

as
0d,1(2) = E[7%e1)E[% 40+ (1-440(G D))
= V(z)E[z‘i’-‘Aq-*(l-Aq.)(G-l)]
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where we also make use of the fact that the distribution for the number of arrivals in a

service period is independent of n. Expanding the second term on the right hand side

in (25), we have

E[zq.—Aq.+(l-Aq.)(G—l)] > Z E P[q" =k G = i]zk—Ak+(l-Ak)(i-1). (26)
k=0i=1

Noting the definition of Ak given in (20) leads to

E[zqn -Aqn+ (l -Aq-)(G = 1)]

Plq,=0] Y P[G=ilz(-D+ Y Plq,=k]z*"1} PG =i]
1

i=1

i=1 k=

1 - 1 d - =
~Plg, = 01G(2) +3[07(2) - P[q, = O]] @n

where we make use of the fact that the group size is independent of the number of

customers left behind upon a departure. Substituting (27) back into (25) leads to |

!

»”

04,1 = 1Plg, = 016V (@) + S04 V(D) - (Pla, = OV (). B
We can now set the limit as n — % and solve for Q9(z) to obtain
dgV(2)[1 - G(2)]
Q) =~y (29)
26
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where we make use of (22) and (23). The probability that a departing customer leaves
behind an empty system, dy, can be determined from the normalization condition,
namely Q9(z)|, _, = 1. As carried out in Appendix B, we have

Gy =8 (30)
g

Finally, substituting (30) into (29), we have the probability generating function of the
equilibrium queue occupancy distribution at departure instants as

dry . (1=p)[1-G(z)]eMM1-G()]
%= = e 1-G@)] _ Gn

where we make use of (4) and (16).
3.2.2 Transition probability matrix and numerical calculations

Next, we find the transition probabilities that describe the behaviour of the Markov
chain formed at departure instants. The one-step transition probabilities are defined as

’”

Pij=Plqy,1 = Jlq, =] (32) 1
P;j can be interpreted as the probability of C, , , leaving j customers behind given |
that C, has left i customers behind. From the two fundamental equations (5) and (6)
that typically characterize the behaviour of the queue, we first observe that
9ne1<q,-1is an impossible situation and leads to p;; = 0 for j<i- 1. Next,
note that p, j Fepresents a transition from an empty queue to a state where j
customers are left behind at the first departure instant of a busy period. This case has
been described by the relation given in (6) and hence Poj = B ; for j20. The

remaining transitions are only due to the arrivals v, ;. For g, >0 and
dn+129, -1, werequire j- i+ 1 customers to arrive during the corresponding

!
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service period to make up the j customers at the departure instant from a previous

value of i. Therefore, p;; = a;_;, for j2i- 1. Hence the matrix of transition

probabilities P = [ p;;] takes the following form:

01 2 3
o [By By B. B
I g o oy 04
2 |0 oy a oy
p=310 0 o o
4 10 0 0 ap ..
Lx & 3 3 = -

As suggested in [10](pp 179), equilibrium probabilities may be calculated using the

vector equation

d = a°P 34)

where d = [dy, d,, d5, ..., d}, ...] whose k'h component denotes the equilibrium
probability of having & customers in the system at departure instants. Noting that the
transition probability matrix is an upper diagonal matrix, the equation (34) can be

re-written in the expanded form as

k+1

dy = Byd,+ ) Gr-iv19i k20
deil 35)
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or equivalently solving for d , ,

k
1
dk+l = &'(')[dk‘ﬁkdo‘ Za’“'l"'d') k20.

i=1

(36)

Therefore, the equilibrium probabilities, starting from d, , can be recursively
calculated provided that dy is known. Fortunately though, the calculations may be
carried out without the prior knowledge of d,. As shown in Appendix C, the
equilibrium probability that a departure leaves k customers behind is of the form

dk=d0fk k20 (37)

where f, satisfies the recursive relationship
fo=1

k
Sra =aio(frl3r£f,-ak+1_i] k20

i=1

. (38)
which can be used to calculate f, up to any values of k without the knowledge of dj,.
Once d is known, 'dk can be calculated according to (37).

The recursion formula given in (38) may suffer from loss of significance in computer
implementations of practical interest since the quantity inside the brackets is the
difference of the positive quantity f, which becomes small for large k,and a
positive sum of comparable magnitude. However, it is possible to transform the
relation into a mathematically equivalent form which is highly stable and ideally
suited for numerical computation (15](pp 16). The details of the transformation have
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been provided in Appendix D. To that end, we introduce two new quantities &, and ‘
B |
k
&k=1—2a,-, Bk=1—Zﬁ,-, k20

=0 i=0 (39)

which are respectively defined in terms of a, and f,. As shown in Appendix D, f,

may then be accurately computed as

fo=1
= la
1 —aoﬁo ,
1 (- k-1 L
fk = —(ﬁk-1+z&k_ifiJ k22.
%o o ] -
(40) N

3.3 Queue Occupancy at Arbitrary Instants :
1

!
As mentioned earlier, in the case of group arrivals, the distribution for the number of i
A

customers left behind by a departing customer is no longer equal to that of at an
arbitrary instant. In determining the distribution for the number of customers present
in the system at an arbitrary instant, 7, one needs to consider not only the number of

¥

customers present in the system at time r but also the elapsed time since the start of

the most recent service. The introduction of the latter variable is known as the method

of supplementary variables.

In this section, we extend the derivation given in [11](pp 58-70) to the case of group
oint distribution for the number of customers

arrivals. First, we define the stationary j
ice time. Next, we derive the relations that

present in the queue and the elapsed serv.
bability generating function for

the stationary distribution satisfies. Finally, the pro
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the distribution of the number of customers present in the queue at an arbitrary time is

obtained by applying transform techniques to the derived relations.

3.3.1 Queue size and elapsed service time

Let L, be the number of customers in the system at time 7. Further, let X ; denote the
amount of service already received by the customer in service at time 7. Although L,
is not a Markov process in general, the process [L,, X ,'] is, as the current value of the
latter process summarizes the entire past history of its motion as far as its future
behaviour is concerned. We assume that X, = O when L, = 0. Let us define the
stationary joint distribution for the number of customers present in the queue and the
elapsed service time as

po= lim Pr{L, =0}, @1

oo

pX)dx= lim Pr{L, =k X, € x4} k21,x20

!

where {Y € y4} denotes {y <Y <y+dy}. Also, we introduce the hazard rate or
the age-specific failure rate b(x) as

=« _b(x)
b =18 @3)

which is the density function for the service time X on the condition that X > x , that

is,
[;(x)dx =Pr{X€ xd_‘|X>x}. (44)

We first consider p(x + Ax) for k2 1. The event (L, ac =k Xipac€ (x+Ax)4)
occurs either when {L, = k, X; € x4} and there are no arrivals during Ax, or
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when {L,=k-i, X, € x,.} and there is an arrival of size i during Ax. A further
requirement in either case is that there are no service completions during Ax. Thus,

we have

k-1
Plx +Ax) = [1 -E(x)Ax][u - AMx)px) + ¥ p,.(x)xgk_,.Ax] (45)

i=1

where we assume Po(x) =0 . We can rewrite (45) as

k-1
+[A+b0)]pgx) = A Y pfx)g, _+o(Ax) 46)

i=1

Di(x + Ax) - Pi(x)
Ax

Taking the limit as Ax — 0, we get the differential equation

k-1
2243 + [+ B@]py) = MEPB k2L
‘= @7

2

Next, we consider the boundary conditions that p, and p,(x) require to satisfy,
Noting that, in equilibrium, the rate at which L ¢ moves out of state 0 due to arrivals
is equal to the rate at which it moves into state 0 from state 1 due to service

completions, we have

Apy = f: p,(¥)b(x)dx. @9
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Similarly, noting that the start of a new service follows cither an arrival to an empty

system or a service completion, we have

p(0) = Agypo+ j P+ 1 (0)b(x)dx k>1.
0 (49)
Finally, the normalization condition is given by
Po+ Y, Io py(x)dx = 1. (50)
k=1

3.3.2 Probability generating function of the distribution p, = lim Pr{L, = k}
L

The system of differential equations given (47) together with boundary conditions
given in (48), (49) and the normalization condition given in (50) can be solved using

transform methods as carried out in Appendix E to obtain the double transform

P*(z, 5) for py(x)

Pz s)= Y 2t J';.e'“pk(x)dx
k=1
_M1-p)z[1-G@2)]1 - B*(s + A - AG(2))
B°A-AG() -z S+A-AG() G

Noting that the probability that there are k customers present in the system at an
arbitrary instant, p,, for k>0 canbe derived from p,(x) by integrating it over x,

namely

Py = I; px)dx,

D

(52)
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multiplying (52) by z*¥ and summing over k>0 yield

)3 Pzt =P(z,9)|,_ -
=1

Observing that the generating function of the distribution for the number of

customers present in the system at an arbitrary instant is given by

P@2) = po+ Y izt
k=1

and substituting first (53) then (51) into (54), we obtain

_ (1- z)e-A.x[l -G(2)]
P@) = (1-p) e-M1-G@)] _ 5

where we make use of

po=1-Aig=1-p

(53)

(54

(55)

"(56)

as also derived in Appendix E. From (55) and (56), it is clear that p, can be expressed

as
Pr = Pok D

where h, satisfies

° -Ax(1-G(2)]
_ k- (1 - Z)e o ) 58
H2) =) Mz = e-MI1-G) _ 2 9
k=0
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Note that calculating p, using the above transform results in the same p; obtained by
solving the systems of differential equations in (47) to (50) directly.

3.3.3 Departure Instants and Arbitrary Instants

Even though we have obtained the generating function of the equilibrium queue
occupancy distribution at an arbitrary instant using the method of supplementary
variables, the computational complexity of inverting the corresponding transform
may become a formidable task. In order to facilitate an efficient calculation of the
distribution, we next explore the relationship between the equilibrium queue
occupancy distribution at a departure instant and that of an arbitrary instant.

The comparison of expressions given in (31) and (55) provides the relationship
between the generating function of the equilibrium queue occupancy distribution at

arbitrary instants and that of customer departure instants as

_ 8(1-2)
P@) = TG 2% ;

" = B(z)Q9%(2) (59)

where B(z) is known as the generating function of the backward recurrence time

distribution with

e ox_8(1-2) |
B(2) -k);obkz ot (60)

By evaluating (59) at z = 0, we confirm the relationship
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as it may also be derived from equations (30) and (56). Further inverting the

transforms on both sides of (59), p, can be expressed as the convolution of two
sequences, that is
P = (6,1 ® [dyf ]
1
= (8d0) ’ é[bk® fk]

= Pohi (62)

where we make use of elementary convolution properties. The relationship given in

(62) also provides an expression, as required in (57), for calculating A, as

hy = é[bt ® 1. 63)
3.4 The Algorithm
In this section, we provide a summary of the results obtained in earlier sections such
that the equilibrium distribution queue occupancy distribution can be calculated
accurately and efficiently. For the sake of completeness, we rewrite the relevant
expressions.
* {g¢"} - givenin (14)
1)
g£ = &k
k-1 (n-1)
n -
g" = Y 8i8k-i n>1
i=1 64)
3 /
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» {a;} -givenin (10) and (15)

ao = e_'u
LD e
o n
o = = Mgy k21
n=1 (65)
+ {B;} - givenin (18)
k+1
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¢ hand side of (69). As G(2)
expansion on B(z) and
{b;}. A more direct

At this step, we require to invert the transform on the righ
is a polynomial in z, we can make use of partial fraction
invert each fraction by inspection to calculate the sequence
algorithm for numerical calculation of the same sequence is for further study.
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3.5 Summary

In this chapter, we have established an algorithm to calculate the equilibrium queue
occupancy distribution at an arbitrary instant of the M [x]/D/ 1/ queue, thatis, the

M/D/1 queue with group arrivals and unlimited buffer. We first use the method of

imbedded Markov chain to obtain the distribution of number of cells left behind by a

departing cell. Then, the method of supplementary variables is used to obtain the

equilibrium probability distribution for the number of cells at an arbitrary time.

Finally, we exploit the relationship between equilibrium probability distribution for i
the number of cells left behind by a departing cell and that of at an arbitrary time to

develop an algorithm for calculating the required distribution.
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