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CHAPTER 4
MODELLING OF THE

PACKET DISCARD
STRATEGY

In this chapter, we introduce the queueing system used to model the Packet Discard
Strategy, namely the M[*1/D/1 queue with threshold. With this queue, the whole
packet is discarded upon arrival if the buffer fill exceeds a threshold value already.
We will observe in the numerical results that modelling with group arrivals
constitutes a worst case as compared to cell arrivals. We will also observe that having
multiple input ports results in a queue length distribution very close to that of group

Py

arrivals.

Through the analysis, we determine the algorithm to calculate the equilibrium queue
statistics. Note that when the queue length is under threshold, the M(*1/D/1 queue
with threshold behaves exactly like the M[*1/D/ 1/ queue. And in the analysis, we
illustrate the relationship between these two queues which promotes efficient
calculation of numerical results of the latter queue. In addition, we explore the
relationships among traffic loading, probability of cell or packet loss, threshold value

and effective utilization factor.
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In section 4.1, we describe the M{*1/D /1 queue with threshold. In section 4.2, the

method of supplementary variables is used to obtain the equilibrium queue statistics
at an arbitrary time. The relationship between the two queues are also established.
Moreover, the queue statistics are derived. In Section 4.3, an algorithm is given to

calculate the required distribution and queue statistics. Finally in section 4.4, we

summarize the chapter.

4.1 Queue Description

The M{*1/D/1 queue with Threshold is a variant of the M(*1/D/1 queue in that the
former incorporates a discarding mechanism based on the buffer fill. This discarding
mechanism can be seen as a discarding-decision process that discards new groups
upon arrivals whenever the queue length exceeds a threshold value. The queueing
diagram representing the M[*1/D/1 with threshold is shown in Figure 4.1. With the
discarding-decision process, some arrivals are rejected. Hence we define A, to be the
average rate of groups that are accepted into the queue and A, to be the average

discarding rate of customers where their sum is equal to A. '

»”

Threshold status

Decision /
A Box A’e
- - Queue —@'—.

Arrival Ty Deterministic
Process * Server:
group
Discarding

Figure 4.1: M/*//D/1 with Threshold and Discarding-decision
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The function of the decision box is such that at each arrival instant, if the buffer fill is
less than the threshold value, the decision box accepts the group, and if the buffer fill
is greater than or equal to the threshold value, the decision box discards the group.

4.2 Analysis at Arbitrary Instants

In this section, we employ the method of supplementary variables and extend the
derivation in section 3.3 to the case with threshold. We first define the stationary joint
distribution for the number of customers present in the queue and the elapsed service
time. We then derive the relations that the stationary distribution satisfies. The
probability of the number of customers present in the queue at an arbitrary time is
obtained by relating the derived relations to those in section 3.3.2. Finally, we

/

determine the effective utilization factor and the probability of cell/packet loss.

4.2.1 Queue size and elapsed service time

As in Section 3.3.1, let us define the stationary joint distribution for the number of

)

Customers present in the queue and the elapsed service time as
,'

Py = lim Pr{L,= 0}, )
pi(x)dx= lim Pr{L, = k, X, € xgz}  k21,x20.
f== (74)

The M(*1/D /1 queue with threshold operates in exactly the same manner as the
M*1/D/1 /00 queue when T > k 2 1. Therefore, when we consider p:(x + Ax) for
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T >k 21, we have the same relationship between p:(x) s as the one for p,(x)’s in
(47) of Section 3.3.1. That is,

k-1

d T = T T
TP + [A+b6(x)]p (%) = A'le, (08.; T>k=21.
= (75)

Next, we consider p:(x + Ax) for k2T . The event

{L,,or =k X,, 2 € (x+Ax),} occurs either when {L, =k X € x;} and
there are no arrivals during Ax, or when {L, = k- i|k-i<T, X, € x4} and there is
an arrival of size i (the one that triggered the PDS) during Ax. A further requirement

in either case is that there are no service completions during Ax. Thus, we have

T-1
op(x+Ax) = [1- E(x)Ax][p{(x) +Y pf(x)xg,c_iAx} (76)

i=1

where we assume pg (x) = 0. We can rewrite (76) as

r” T T-1
12(x+Ax) - p(x) -
- — Pr +b(x)p{(x) = li);l p,-T ()8 - )

Taking the limit as Ax — 0, we get the differential equation

T-1

d T = T T
FPE®) +bX)pL(x) = A Y P (8- kaT.
i=1 (78)
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Now, let us consider the boundary conditions that pg and p:(x) require to satisfy.

Again, we have the same relationship between p{(x) and pg as the one between

p1(x) and p in (48). That is,
lpg = jo p{(x)B(x)dx. (79

Noting that the start of a new service follows either an arrival to an empty system or a

service completion regardless of the queue size, hence we have the same relationship

between pI(O) ’s and that between p,(0)’s in (49). That is,

bl (0) = Agpf + f; pr. (0b(xdx  1<k<eo. o

Finally, we have the same normalization condition as in (50) and is given by

P+ Y [ pr(x)dx = 1. @1)
k=1

4.2.2 The M™//D/1/ queue and the M!™/D/1 queue with threshold

In solving the differential equations of the queue, we consider the case for 1<k<T
and the case for k > T separately. As the differential equations and boundary
conditions of p:(x) and those of p,(x) in section 3.3.1 are the same for 1<k<T,

hence if we solvg the systems of differential equations iteratively, we will obtain the

samcratiofor& and p—k for 1 <k<T.Thatis,

T
pg Po
PE_Pr_p  for1sk<T (82)
pf  Po
,)
43 '
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where p[ is the equilibrium probability of the number of customers in the system at
an arbitrary instant. Therefore, we can make use of the numerical calculation of A,
from section 3.3 to calculate p] , if pJ is known. Fortunately, pg can be derived from
the relationship between pJ(0) and the probability that the server is busy. As derived

in Appendix F, we have

T-1 =-1
Pg = [1 +A%g ¥ hk] . (83)
k=0

For the case where k > T, it can be seen that the maximum possible number of

customers in the system is T - 1 + G,,,, Where G, is the maximum possible

number of customers within a group. Hence,

pf =0 for k> (T - 1+ Gpgy) (84)

The equilibrium probability of having 7 to 7 - 1 + G0« Customers in the system at
an arbitrary time is not of practical interest as the probability is not required for the

calculation of the queue performance.

4.2.3 Queue performance

In this section, we establish the performance measures for the M *1/p/1 queue with
threshold. These measures include effective utilization factor and the probability of

losing a group due to the discarding mechanism.

The probability of losing a group is the probability of a group of customers arrives

and sees the system is not accepting any new arrivals. Our queue will not accept new

arrivals if there are T or more customers in the queue at the arrival instant. Therefore,
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P[k 2 T]at arrival instants = P|[the system accepts no new arrivals]

By the PASTA (Poisson Arrivals See Time Averages) property, when a new group of
customers arrives, the probability of the group finding the system is accepting no new

arrivals is equal to the equilibrium probability of having T or more customers in the

queue at arrival instants. Hence,

oo T-1
Plss = ):p[ =1-pf ¥ (85)
k=T k=0
By making use of (83), we have
T-1
Y
T k=0
Ploss =1- T-1 ° (86)
1+nghk
k=0

]
4

The rate of loss of 'groups, AJ s, is the product of the probability of losing groups,

Pf,,, and the average arival rate of groups. That is,

AL” = A,P];” . (87)

In the queueing theory literature, the utilization factor, p, of a queueing system is

defined as the fraction of time the server is busy. Therefore,

average arrival rate of customers

average service rate of customers
omers X average service time.

= average arrival rate of cust

45

MODELLING OF THE PACKET DISCARD STRATEGY




A PACKET DISCARD STRATEGY FOR CONGESTION CONTROL IN ATM DATA NETWORKS

For example, for the M/D/1/% queue, we have

p = AX, (88)
and for the M[*1/D/1/ queue, we have
p = AXg. (39)

However, for a system with loss, not all of the arrived customers are serviced. Some

of them are discarded / lost. Therefore,

average arrival rate of customers X average service time
# the fraction of time the server is busy.

In analysing systems with loss, we use the term effective utilization factor, p,, to

represent the fraction of time the server is busy. Hence,

P, = average arrival rate of customers that are not discarded x average service time

and for the M(*1/D/1 queue, we have

Pe = (A - A'lo.s'.s')'fg*

where A, is the average discarding rate of customers. But we still use the term

p = Axg

45 @ measurement of the level of loading of the system, namely offered load.

A ——
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For the M[*1/D/1 queue with threshold, the average arrival rate of customers is the

product of the average arrival rate of groups and the average length of groups. Hence,

peT = (A- A[E;;)Eg- (90)
pT = Axg. o1
As the definition of the effective utilization factor, p7 , is the fraction of the time the

system is busy and pg' is the equilibrium probability of the system being empty at an

arbitrary instant, we have

ol =1-pf. (92)

' By make use of (83), the effective utilization factor can be expressed as

Tal
Axg Y hy
T _ k=0
ol = ., 93)
1+M¢gzhk .
k=0

By substituting (93) into (90), we have the same expression for P[,, as derived in
(85).

4.3 The Algorithm

In this section, we provide a summary of the results obtained in section 4.2 such that
the equilibrium queue statistics can be calculated accurately and efficiently. For the

sake of completeness, we rewrite the relevant expressions.

T y
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e {h;} - givenin (63) in section 3.3.3

1
hy = g[bk ® fil (94)
« p§ - givenin (83)
T-1 -1
pf = [1 +Azg ¥ h;;'] (95)
k=0
* {p;} - givenin (82)
T T
Pt = Pohy 1<k<T %)
- P}, - givenin (86)
T-1
/
2 M
T k=0
Plogs = 1- - T-1 N
1+AXg Z hy
k=0
* pT -given in (91) '
., of = A%g (98)
* pT - givenin (92)
pl =1-p§ &

4.4 Summary and Discussions

In this chapter, we c‘stablished an algorithm to calculate the equilibrium queue
Occupancy distribution at an arbitrary instant of the M{*1/D/1 queue with threshold.
The method of supplementary variables is used to obtain the equilibrium probability
distribution for the number of cells at an arbitrary time. In the analysis, we exploit the
relationship of equilibrium probability distribution between the M [x1/D/1/% queue

e
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and the M(*1/D /1 queue with threshold to develop an algorithm for calculating the

required distribution and queue statistics efficiently.

The M[*1/D/1 queue with threshold operates in exactly the same way as the
MI*1/D/1/% queue up to a particular level of buffer fill. Therefore, it can be
considered as a variant of the M(*1/D/1 /0 queue in which the dynamics of the
queue occupancy changes when a particular value of queue occupancy is reached.
This similarity allows us to make use of /; to promote efficient calculation of
equilibrium queue statistics for the M[*1/D/1 queue with threshold. The discarding
mechanism introduce some loss into the queue. The loss will affect the percentage of
the time the server is busy, hence affecting the probability of having an empty queue
and finally affecting the probability of the rest of the queue occupancy.

The algorithm to solve for the equilibrium queue statistics for both queues is to
identify the five fundamental equations which characterize the behaviour of a queue.
These equations are listed in Table 4.1. Note that with group arrivals, we have

p = Agx.

The first equation is the relationship between p, and p,. Since both queues operate in
the same way up to a particular level of buffer fill, the relations are the same up toa
particular value. Here, the function A, can be considered as the dynamics of the
queue. The second equation is the normalization condition. The third equation states
the probability of lo‘ss. The derivation of this equation requires understanding of how
a variant of the queue operates. The fourth equation states the relationship between
the probability of the system being busy and the probability of loss. The last equation
states that the probability of the system being busy is equal to one minus the
probability of having an empty system. Once the probability of having an empty

49
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MX1/D/1/c0 M*1/D/1 with Threshold
p{ = pghk fork<T
Pr = Pohi
- « T-1
Ep{:l ):PZ'=1-PE):hk
=% t=T k=0
T = (1-PT
Pe = (1-Pyss)p Pe = ( loss P
T=i
Py =0 Ple = 1-P§ ¥ M
k=0
peal_po pg-il-pa.
/

Table 4.1: The Five equations which Characterize the Behaviour of a Queue.

queue is derived, the queue statistics can be calculated according the rest of the

equations.

MOD 50
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CHAPTER 5
MODELLING OF THE
CELL DISCARD STRATEGY

In this chapter, we introduce another variant of the M[*1/D/1 queue to model the
Cell Discard Strategy, namely the M[*1/D/1/B queue where B denotes the buffer
size. With this queue, upon a group arrival the queue will discard the cells within a
group that cannot fit into the remaining space in the queue. Therefore, an arriving
group of customers may be totally accepted, partially accepted into the queue or
totally rejected. This discarding nature is similar to the Cell Discard Strategy
operating within an ATM switch. With the queueing model, we use the goodput to
investigate the performance of the Cell Discard Strategy. /

Through the analysis, we determine the algorithm to calculate the equilibrium queue
statistics. Note that as in the case of the M{*]/D/1 queue with threshold, the
M=1/D/1/B queue operates exactly as the MI¥1/D/ 1/ queue before the queue
is full. And in the analysis, we illustrate the relationship between the M{*1/D/ 1/
queue and the M(*1/D/1/B queue. Moreover, we explore the relationships among
traffic loading, probability of cell/packet loss, buffer size and effective utilization
factor.

In section 5.1, we describe the M[*1/D/1/B queue. In section 5.2, the method of
sUpplcmcntary variables is used to obtain the equilibrium queue statistics at an

e ——
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arbitrary time. The relationship between the two queues is also established. In
addition, the queue statistics are derived In Section 5.3, an algorithm is given to
calculate the required distributions and queue statistics. Finally in Section 5.4, we

summarize the chapter.
5.1 Queue Description

The M1*1/D/1/B queue is a variant of the M1*1/D /1 queue in that the former has
a buffer of limited size B. The queueing diagram representing the M(*1/D/1/B
queue is shown in Figure 5.1. When a group arrives, the system keeps accepting into
the buffer the cells in the group until the buffer size reaches B. Then, the rest of the
cells in the group are discarded. As a result, the system discards cells at an average
rate A;,... We use this discarding-process to model the Cell Discard Strategy.

B
A(packets/s) m
m Buffer Il/x/ it
Arrival Deterministic
Pl'occss ) *A‘Ioss(ceus/ S) Server

Cell

Discarding
.-_'-'—.__

Figure 5.1: The M(=)/p,/ 1/B queue

5.2 Analysis at Arbitrary Instants

zne:!::ﬁt:t‘:;:;: employ the mcthod- of supplementary variables and extend the

o " fon 3.3 to the case with limited buffer. We first define the stationary
Sevice i New or the m.lmbcr of cu.stomers present in the queue and the elapsed
+ eXt, we derive the relations that the stationary distribution satisfies.

Ly
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The probability of the number of customers present in the queue at an arbitrary time
is obtained by relating the derived relations to those in section 3.3.2. Finally, we
determine the effective utilization factor, probability of cell loss and the probability

of packet loss.
5.2.1 Queue size and elapsed service time

As in Section 3.3.1, let us define the stationary joint distribution for the number of

customers present in the queue and the elapsed service time as

0 = lim Pr{L, = 0}, (100)

t—oo

pydx = lim Pr{L, = k, X, € x4} k>1,x20.
== (101)

As the M(31/D/1/B queue operates in exactly the same manner as the
M=1/D/1/% queue when k < B, we have the same relationship between pf(x)’s

and the one for p,(x)’s in (47) of Section 3.3.1. That is,

k-1

—Pk(x)+ [7L+b(x)]pk(x) = lz p; (x)gk 1<k<B.
i=1 (102)

Next, we consider pj B(x + Ax) for k = B.Note that py B(x) = 0 for k>B. The event

{Lisac=8, X,+A,€ (x + Ax) 4} occurs either when {L,=B,X; € x4} and

there are some or no arrivals during Ax, or when {L,=B-}, X, € x4} and there

is an arrival of size greater than to equal to i (the group that fill up the buffer) during
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Ax . A further requirement in either case is that there are no service completions

during Ax . Thus, we have

« B-1
pp(x+Ax) = [1-5(x)Ax][p§(x)+ Y ¥ pi(0g; ,.AAx} (103)
j=Bi=1

where we assume poB(x) = (0. We can rewrite (103) as

o B-1

+b(0pp(x) = A Y ¥ P (x)g;_ i+ O(AX,
j=Bi=1

vg(x +Ax) - pg(x)
Ax

/  Taking the limit as Ax — 0, we get the differential equation

o B-1

EPHERTOTAORES Y WACUR

j=8i=1

(104)

Now, let us consider the boundary conditions that pg and pk B(x) require to satisfy.
Again, we have thc same relationship between p; F(x) and Po and the one between

Pi(x) and p, in (48). That s,

ApL = f: po(x)b(x)dx.
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Noting that the start of a new service follows either an arrival to an empty system or a

: B :
service completion, and that p(0) cannot occur at customer departure instants, we

have

PE(0) = Ag,pl + [, Pre1®B(x)dx  1<k<B, (106)
B o0
Pp(0) = ¥ Agpp. (107)
i=B

Finally, we have the same normalization condition as in (50) and is given by

B
B > B
= 1. 1
i+ X forboas = 1 o
k=1
522 M™D11/o0 queue and M™/D/1/B queue

In solving the differential equations of the queue, we consider the case for 1 <k<B
and the case for k = B separately. As the differential equations and boundary a
conditions of pf(x) and pg(x) in section 5.2.1 and those of P(x) and p, in section
3.3.1 are the same for | S k< B. Hence, if we solve the Systems of differential

©quations iteratively, we wil] obtain the same ratio for }-9% and 1? for 1 <k<B.That
is, Po 4

— === for 1<k<B © (109)
r§ g

Where PP is the equilibriym

4 arbiu-a,-y instant, He

Cale = B,
ate pp. if pp is

probability of the number of customers in the system at
fice, we can make use of the results of ¢ from section 3.3 to

known. Fortunately, pOB can be derived from the relationship

A\
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between p£(0) and the probability that the server is busy. As derived in Appendix G,

we have

B-1 o -1
B - i-(B-k)

k=0 i=B+1-k

For the case when k = B, we can make use of the normalization condition and (110)

to obtain
B-1
B-1 Y A
pPE=1-Y pf=1- el s
’ k=0 [1+Ajg2h,{l- 2 g,-l—-_(g_k)
k=0 i=B+1-k

Hence, we can make use of the results of h,, from section 3.3 to calculate pf is

known.

5.2.3 Queue perf(i'rmance

Now, we derive the ‘exprcssion for effective utilization factor for cells, pf , and the
effective utilization factor of packets, that is, the goodput of the system. Let us first
cxamine the situation of overflow which results in cell loss. The buffer overflows
when the size of an arriving group is larger than the size of the available buffer space.
When this occurs, some or all of the cells of the arriving group are lost. Note that the
probability that a tagged cell belongs to a packet of size i is ig;/g . Hence the
Probability of a tagged cell belongs to the proportion of the cells that are discarded in

MODELLN 56
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... i-(B-k
a packet of size i is L——)-g i Where B - k is the remaining buffer size. Hence,

we have

B oo
i-(B-k
Pc["_loss = pr E “%g,-. (112)
k=0 i=B+1-k

By making use of (109) and (110), we have

B-1 o
i-(B-k)
kgohk(l - E _g 8;]

B

i=B+1-k
Pc-_lou. = 1— -1 : - - (B k) . (113)
= l- -
1+R.xg Z hk[l - - Z P g|]
/ k:o i=B+1-k

We also have the rate of loss of cells, AP, equal to the product of the probability of

losing cells and the average arrival rate of cells. That is,

4
A’ﬁus = AP 5_[03.!' gll )

9

Recall from section 4.2.2 that the definition of the effective utilization factor, p,, is
the fraction of the tfmc the system is busy. And pg is the equilibrium probability of
the system being empty at an arbitrary instant. Hence,

(115)
pf = 1-p§.

Since there is loss in this queue, we have

T 11
p = (A -APs)%8- (iio}

T o]
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Note that the offered load of the system is

pB = Axg. (117)

By making use of (110) and (115), we have the effective utilization factor for cells as

B-1 o
5 - (B -k

S (B> =G-n, )
k=0 i=B+1-k

pd =
e B-1 o (B- k)
< i-(B-
1+ Axgkzohk(l - E Tgi)
= i=B+1-k

(118)

/ Here, there is a need to distinguish the probability of cell loss, the probability of a
packet being corrupted or dead, and the probability of a cell being dead, denoted as
P2 oss+ P p_dead and P 2 deaa Tespectively. P8 |55 is the probability of a cell being
discarded due to buffer overflow. P} jeqq is the probability of a packet being
Corrupted, that is, being totally destroyed or partly destroyed due to buffer overflow.

And P2 dead 15 the probability of a cell being useless because the packet which if

C

belongs to is corrupted. By definition, the effective utilization factor,p f, that we are

Considering is the throughput of cells of the system. Hence, it depends on PE iosa

rath B
er than P p_loss -

58
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Next, let us consider the goodput of packets of the system. By making use of the

PASTA property, we have
P[a packet going through the queue without being corrupted]
= Pfall the cells of an arriving group will be accepted by the queue]
= P[there is enough space in the buffer to accept the whole group of cells]
B
P[the arriving group sees the queue having k customers in it] x
k=0 P[the size of the group < B -k]

B-k

= Py toss = 1 EP.t Y &= 1—Epk):g, (119)

k=0 i=1 k=0 i=1

Therefore, the goodput of packets, pg _packet » 15

/

B -
Pg_packet = A(l- Pg_loss)xg (120)

By making use of (109), (110) and (119), we get

’” B-1 B-k
AXxg Z hy E 8i
: (121)

= i=1

B
pg—Pm‘ = B-1 oo
_ -(B-k
[1_ L—QL_)gJ

1+Aig!:hk z: g

k=0 i=B+1-k

Ahhough Pg_packet shows the goodput of packets, it may be misleading whep offered
ions. When offered load is high,

load is large with multi-modal packet size distributi
most of the corrupted packets would be large packets and hence the goodput would
Stay high. In order to obtain the true goodput of the queue, We should consider the
8oodput of cells. That is, the cells belong to good packets. We denote this goodput of

cells B
85 Pg_good_cells -

59
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In order to obtain the goodput of cells, we consider the probability of a cell being
dead, Pf_de 24 due to the packet to which it belongs being corrupted. By making use

of the PASTA property again, we have

B
(1-°P c_dead)
=P[a cell accepted by the queue and the packet to which the cell belong stays good]

= EE P(a cell belonging to a packet of size i arrives and
seek the queue having k customers in it and the whole packet can be accepted

into the queue]

= ;Z: Pthere are k customers in the queue when the queue is in equilibrium] x
! P[a cell belonging to a packet of size i] x
P[a packet of size i being accepted into the queue totally | the queue has

k customers in it]

ig; :
The probabilities of the last expression are pE, —;—' and P[accept | k] respectively

where

1 i<B-k
» Placceptlk] = (0 i>B-k

‘
i

Therefore, we get

B o .
PP 18i 1k ;
c_dead = 1 kzopfiz gP[accep ]
= i=1
B B-k.
18
Y ) o
=1- k=0 i=18 (122)
B-1 Lo . —k)
. i-(B-K)|
[l+hg£h,{l- Yy &
k=0 i=B+1-k
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where we make use of (110)

And we have

B B -
Pg_good_cells = A(1-p c_dcad)xg . (123)

By making use of (122), we obtain

B-1 B-kig-
Axg Y h ¥} —
kgo i=Elg 124
Pg_good_ — - - (124)
- i-(B-
1+Axgkzoh,{1-- y (T)g‘)'
= i=B+1-k

3.3 The Algorithm

In this section, we provide a summary of the results obtained in section 5.2 such that

the equilibrium queue statistics can be calculated accurately and efficiently. For the
ke of completenéss, we rewrite the relevant expressions.

{h;} - given in (63) in section 3.3.3

he = é[bk®fk]. (125)
P8 * 8iven in (110)

B-1 oa )\ ;
of = [Hmzh{ 5 _Mg]] | s

0 =B+1-k &

{pk} - given in (109)

B B
Pr = Pohy k<T Az

MO e

0 ELL]
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B

P, 1oss - given in (113)
N ~ i-(B-k
):hk(l— ) ‘T’g,]
P k=0 i=B+1-k
c_loss — + 7 B-1 P :
= i-(B-k
1+lxgz h{l— E _('—-)8.]
k=0 i=B+1-k §
. pf - given in (115)
B
Pe = 1-p§.
. B L
P, 1oss - given in (119)
& B B-k
/ Pp_lo.rs = E sz 8i = 1‘P3 E hkz 8i-
k=0 =1 = i=1

Dg_pm given in (120)

B
5 Pg_packet = A1 'Pg_los.r)ig'
Pe_dead - given in (122)

. B B - kg
l
P2 ): "
¢_dead = 1- 21 '—1 .
- i-(B-k)

|:1+Mgt2-:ohk[l - )3 85— ]]

= i=B+1-k

. B
P

8-good_cells - given in (123)

p8_800d cells — A'(]‘ Pc dead)xg

54
Summary and Discussions

In
this chapter, e established

Statis an algorithm to calculate the equilibrium queue

(128)

(129)

(130)

{a3n

(132)

(133)

tics g
A erbitrary instant of the M¥1/D,/1/B queue, that is, the M/D/1
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queue with group arrivals and buffer of limited size B. We use the method of
supplementary variables to obtain the equilibrium queue statistics for the number of
cells at an arbitrary time. We exploit the relationship of equilibrium probability
distribution between the M[¥1/D/1/% queue and the M*1/D/1/B queue to
develop an algorithm for calculating the required distribution and queue statistics.

A comparison of the five fundamental equations which characterize the behaviour of

a queue are listed in Table 5.1. Note that with group arrivals, we have p = AXg.The

Mxl/D/1/co ME/D/1/B

Pr = Pohi pf = pBh,  fork<B

o B-1
yrf=1 pf=1-P8Y M
k=0 k=0

P, = (1-Pp)P pZ = (1-Phyp

B-1 L )
Py =0 i-(B-k)
- Phe=pP8Y M ) —g 8
k=0 i=B+1-k
PeEI‘Po
; pf:l-pg
aviour of a Queue.

Table 5.1: The Five equations which Characterize the Beh

two variants we considered in the thesis both introduce some loss into the queue. The

loss will affect the percentage of
probability of having an empty queu

the time the server is busy, hence affecting the
e and finally affecting the probability of the rest

of the queue occupancy.

We believe that the technique in relating a queueing system with its variants can be

applied to other kind of queues, other than the M (¥ ,p/1 queue, with no or minor

63
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modifications but is subject to further investigations. Note that this technique applies

only to a variant of a queue that either changes the arrival or service process when a
level of buffer fill is exceeded.

»»”

\_
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