数理视野下的易学(精)/跨学科视野下的易学丛书 (I Ching under the perspective of Mathematics and Science – The Series of I Ching Study under Transdisciplinary perspectives) ISBN: 9787562352761

DO NOT DELETE

古中醫學會圖書館藏書 Ancient Balance Medicine Association Library Collection 

目录
第一章象数新探
第一节易卦是什么
一、易卦是数
二、易卦集是群
三、易卦集是几何模型
四、易卦集是二项式
五、易卦与集合
六、易卦与矩阵
七、易卦与代数域
第二节大衍之数的数学内涵
一、大衍之数的含义
二、大衍之数是互乘之数
三、大衍之数勾股解
四、大衍之数与占筮的性质和数学有关
第三节筮法程序、卦序和演卦中的数学
一、筮法程序中的数学
二、卦序中的数学
三、演卦中的数学
四、简短的评论
第二章演易新法
第一节爻群(爻式)演卦法
一、京房的八宫卦变
二、《周易》的太极原理
三、爻群(爻式)的特殊结构
第二节易矩阵研究
一、经典易矩阵理论述评
二、易矩阵理论的建构
三、邵雍演卦法的矩阵表示
第三节爻群的矩阵结构
一、易矩阵的本质
二、伏羲爻群的另一种表示方法
三、奇偶演卦法的矩阵表示
四、爻群的矩阵结构
五、满卦矩阵的爻群构造法
第三章易卦新证
第一节爻群的数学本质
一、加一倍法:经典演易理论新解
二、爻群演卦法:现代演易理论简介
第二节关于一个演易定理的数学证明
一、Gray码及其性质
二、演易爻群的数学本质:Walsh函数及其生成
三、演易定理及其证明
第三节完备的易卦演绎定理及其证明
一、Walsh函数的定义及性质
二、Walsh函数新应用:区组设计
三、Walsh函数、区组设计与演易
四、Walsh函数与加强演易定理
第四章易数新知
第一节爻群变序研究
一、爻群变序与易数
二、变序数列与变序卦群
三、变序与置换
四、变序规则的交比不变性
第二节八宫数论与爻群的构造
一、八宫矩阵与爻群的构造
二、八宫矩阵与沃尔什奇函数
三、完美的十六元变序爻群
第三节典型八卦次序的数学统一性
一、文献记载的经典八卦卦序举要
二、可表为数学函数式的八卦卦序
第五章变卦新解
第一节先天八卦方位图与周期对称函数
一、周期对称函数的性质
二、实例分析
第二节易卦的向量表示及其变换
一、易卦的数学内涵
二、易卦的向量表示
三、易向量的变换
四、对角矩阵:变卦的变换算子
第三节6阶算子:六十四卦的变换
一、不倒覆、只变号变换(主对角矩阵)
二、先倒覆、后变号变换(副对角矩阵)
三、对卦变换(Ⅰ型):上卦倒覆、下卦正置变换
四、对卦变换(Ⅱ型):下卦倒覆、上卦正置变换
第六章序卦新论
第一节今本《周易》卦序结构及其演绎
一、今本《周易》卦序的结构分析
二、今本《周易》卦序的演绎生成
三、讨论:关于特区A和B在今本《周易》卦序中的地位
第二节今本《周易》卦序排列数学规律初探
一、序卦及其卦序编码
二、序卦分布的基本规律
第三节今本《周易》卦序排列数学规律再探
一、再论一阴五阳卦分布律
二、再论三阴三阳卦分布律
三、试论十二辟卦分布律
四、序卦分布容斥律
第四节今本《周易》卦序排列数学规律i探
一、一类特殊的简单数列及其通项的数学表示
二、序卦布排的数列规律及其通项表示
三、序卦布排的统合原理
四、卦序数理的进一步探究
第五节今本《周易》序卦、杂卦分布规律坐标几何通解
一、杂卦及其卦序编码
二、三十六格棋盘与河洛七七方阵图的构建
三、直线的艺术:《序卦》卦序平面几何图解
四、平面的创造:《杂卦》卦序立体几何图解
五、讨论
参考文献
索引

table of Contents
The first chapter explores the number of elephants
The first quarter is what is easy
One, easy to count
Second, easy to set is a group
Third, easy to set is a geometric model
Fourth, easy to set is binomial
V. Easy to collect and collect
Sixth, easy and matrix
Seven, easy-to-use and algebraic domains
The second part of the mathematical connotation of the number of students
First, the meaning of the number of major
Second, the number of major differences is the number of mutual multiplication
Third, the number of major gouache solution
4. The number of major differences is related to the nature and mathematics of divination.
Section III. Mathematics in Defamation Process, Order and Deduction
One, mathematics in the law of defamation
Second, the sequence of mathematics
Third, the interpretation of mathematics
Four, brief comments
The second chapter of the new law
The first section of the 爻 group (爻式) deduction method
I. The Eighth Palace Transmutation in Beijing
Second, the “Book of Changes” Tai Chi principle
Third, the special structure of the group
The second section of the matrix study
First, review of the classic matrix theory
Second, the construction of the matrix theory
Third, matrix representation of Shao Shao deduction method
Section III The Matrix Structure of the Quail Group
First, the nature of the matrix
Second, another way of expressing Fuxi Group
Third, the matrix representation of the parity deduction method
Fourth, the matrix structure of the group
Fifth, the ensemble group structure method
The third chapter is easy new certificate
Section 1 The Mathematical Essence of Qun Group
One, plus twice: a new solution to the theory of classical music
Second, the group deduction method: Introduction to modern theory
Section II Mathematical Proof of a Relevant Theorem
I. Gray code and its properties
Second, the mathematical nature of Yan Yiqun: Walsh function and its generation
Third, the recurrence theory and its proof
The Complete and Easy Interpretation of the Third Section Theorem and Its Proof
First, the definition and nature of the Walsh function
Second, the new application of Walsh function: block design
Third, Walsh function, block design and performance
Fourth, Walsh function and strengthen the relativity theory
The fourth chapter is the number of new knowledge
Section 1 Study on the Order of Groups
First, group order and number
Second, the order of the sequence and order group
Third, the order and replacement
Fourth, the invariance of cross ratio rules
The Second Section of Eighth Palace Number Theory and the Structure of Dai Group
The Structure of One and Eight Palaces and the Group
The two-octagon matrix and the Walsh function
Three, perfect sixteen yuan order group
The mathematical unity of the typical gossip sequence in the third quarter
First, the documentary records of the classic gossip sequence
Second, the table can be expressed as a mathematical function
The fifth chapter changes the new solution
Section 1 Intrinsic figure and periodic symmetry function
First, the nature of the periodic symmetry function
Second, the case analysis
The second section of the easy vector representation and its transformation
First, the easy mathematical connotation
Second, easy vector representation
Third, the transformation of the easy vector
IV. Diagonal matrix: transform operator
Section 6 6-order Operators: Sixty-four Shifts
One, no overturning, only change sign (main diagonal matrix)
Second, first inverted, post-transformation (subdiagonal matrix)
Third, pair transformation (I type): upside down, upside down transformation
Fourth, confrontation transformation (type II): squat down, upside down
Chapter 6: New Theory of Order
The first section of the current “Book of Changes” sequence structure and its interpretation
First, the structural analysis of this “Book of Changes” order
Second, today’s “Book of Changes” sequence deduction generation
III. Discussion: The status of SAR A and B in the current “Book of Changes” preface
A Preliminary Study on the Arrangement of Mathematical Rules in the Second Section of Today’s Book of Changes
First, sequence and sequence code
Second, the basic rules of order distribution
The Third Quarter: Revisiting the Mathematical Rules of the Book of Changes
First, discuss the distribution law of Yin and Wuyang
Second, discuss the distribution law of Sanyin Sanyang
Third, on the distribution law of the twelve rumor
IV. Ordinal Disposition Distribution
The fourth quarter of this book “Book of Changes” arranges the mathematics law
A mathematical representation of a special simple sequence and its general terms
Second, the order of the layout of the law and its general terms
Third, the principle of integration of sequence layout
Fourth, the further study of order and order
Section 5: The Coordinate Geometric Solution to the Distribution Rules of Preface and Miscellaneous in Zhouyi
First, hybrid and its code sequence
The construction of two, thirty-six grid checkerboard and Helu seventy-six square chart
Third, the art of straight lines: “Preface and Postscript”
Fourth, the creation of the plane: “mixed mantis” order three-dimensional geometric illustration
V. Discussion
references
index

Share This Book

Similar Titles

"It’s no use going back to yesterday, because I was a different person then." - Lewis Carroll, Alice’s Adventures in Wonderland

(I Ching under the perspective of Mathematics and Science - The Series of I Ching Study under Transdisciplinary perspectives) 数理视野下的易学(精)/跨学科视野下的易学丛书

Author: 王俊龙
Pages: 192
Category: Mathematics 數學 道象理數 算術
Publisher: South China University of Technology Press
Publication Date: 2017
Finished? No
Signed? No
First Edition? No

Purchase this title at:

Description
王俊龙著的《数理视野下的易学(精)》从数理的视野解读演易新法、易卦新证、易数新知、变卦新解和《序卦》新论,使易学成为当代知识体系中一个组成部分,使得易卦数理在现代科学中的主导地位而显得尤为突出。具体包括第一章象数新探,第二章演易新法,第三章易卦新证,第四章易数新知,第五章变卦新解,第六章序卦新论。 目录 第一章象数新探 第一节易卦是什么 一、易卦是数 二、易卦集是群 三、易卦集是几何模型 四、易卦集是二项式 五、易卦与集合 六、易卦与矩阵 七、易卦与代数域 第二节大衍之数的数学内涵 一、大衍之数的含义 二、大衍之数是互乘之数 三、大衍之数勾股解 四、大衍之数与占筮的性质和数学有关 第三节筮法程序、卦序和演卦中的数学 一、筮法程序中的数学 二、卦序中的数学 三、演卦中的数学 四、简短的评论 第二章演易新法 第一节爻群(爻式)演卦法 一、京房的八宫卦变 二、《周易》的太极原理 三、爻群(爻式)的特殊结构 第二节易矩阵研究 一、经典易矩阵理论述评 二、易矩阵理论的建构 三、邵雍演卦法的矩阵表示 第三节爻群的矩阵结构 一、易矩阵的本质 二、伏羲爻群的另一种表示方法 三、奇偶演卦法的矩阵表示 四、爻群的矩阵结构 五、满卦矩阵的爻群构造法 第三章易卦新证 第一节爻群的数学本质 一、加一倍法:经典演易理论新解 二、爻群演卦法:现代演易理论简介 第二节关于一个演易定理的数学证明 一、Gray码及其性质 二、演易爻群的数学本质:Walsh函数及其生成 三、演易定理及其证明 第三节完备的易卦演绎定理及其证明 一、Walsh函数的定义及性质 二、Walsh函数新应用:区组设计 三、Walsh函数、区组设计与演易 四、Walsh函数与加强演易定理 第四章易数新知 第一节爻群变序研究 一、爻群变序与易数 二、变序数列与变序卦群 三、变序与置换 四、变序规则的交比不变性 第二节八宫数论与爻群的构造 一、八宫矩阵与爻群的构造 二、八宫矩阵与沃尔什奇函数 三、完美的十六元变序爻群 第三节典型八卦次序的数学统一性 一、文献记载的经典八卦卦序举要 二、可表为数学函数式的八卦卦序 第五章变卦新解 第一节先天八卦方位图与周期对称函数 一、周期对称函数的性质 二、实例分析 第二节易卦的向量表示及其变换 一、易卦的数学内涵 二、易卦的向量表示 三、易向量的变换 四、对角矩阵:变卦的变换算子 第三节6阶算子:六十四卦的变换 一、不倒覆、只变号变换(主对角矩阵) 二、先倒覆、后变号变换(副对角矩阵) 三、对卦变换(Ⅰ型):上卦倒覆、下卦正置变换 四、对卦变换(Ⅱ型):下卦倒覆、上卦正置变换 第六章序卦新论 第一节今本《周易》卦序结构及其演绎 一、今本《周易》卦序的结构分析 二、今本《周易》卦序的演绎生成 三、讨论:关于特区A和B在今本《周易》卦序中的地位 第二节今本《周易》卦序排列数学规律初探 一、序卦及其卦序编码 二、序卦分布的基本规律 第三节今本《周易》卦序排列数学规律再探 一、再论一阴五阳卦分布律 二、再论三阴三阳卦分布律 三、试论十二辟卦分布律 四、序卦分布容斥律 第四节今本《周易》卦序排列数学规律i探 一、一类特殊的简单数列及其通项的数学表示 二、序卦布排的数列规律及其通项表示 三、序卦布排的统合原理 四、卦序数理的进一步探究 第五节今本《周易》序卦、杂卦分布规律坐标几何通解 一、杂卦及其卦序编码 二、三十六格棋盘与河洛七七方阵图的构建 三、直线的艺术:《序卦》卦序平面几何图解 四、平面的创造:《杂卦》卦序立体几何图解 五、讨论 参考文献 索引 table of Contents The first chapter explores the number of elephants The first quarter is what is easy One, easy to count Second, easy to set is a group Third, easy to set is a geometric model Fourth, easy to set is binomial V. Easy to collect and collect Sixth, easy and matrix Seven, easy-to-use and algebraic domains The second part of the mathematical connotation of the number of students First, the meaning of the number of major Second, the number of major differences is the number of mutual multiplication Third, the number of major gouache solution 4. The number of major differences is related to the nature and mathematics of divination. Section III. Mathematics in Defamation Process, Order and Deduction One, mathematics in the law of defamation Second, the sequence of mathematics Third, the interpretation of mathematics Four, brief comments The second chapter of the new law The first section of the 爻 group (爻式) deduction method I. The Eighth Palace Transmutation in Beijing Second, the "Book of Changes" Tai Chi principle Third, the special structure of the group The second section of the matrix study First, review of the classic matrix theory Second, the construction of the matrix theory Third, matrix representation of Shao Shao deduction method Section III The Matrix Structure of the Quail Group First, the nature of the matrix Second, another way of expressing Fuxi Group Third, the matrix representation of the parity deduction method Fourth, the matrix structure of the group Fifth, the ensemble group structure method The third chapter is easy new certificate Section 1 The Mathematical Essence of Qun Group One, plus twice: a new solution to the theory of classical music Second, the group deduction method: Introduction to modern theory Section II Mathematical Proof of a Relevant Theorem I. Gray code and its properties Second, the mathematical nature of Yan Yiqun: Walsh function and its generation Third, the recurrence theory and its proof The Complete and Easy Interpretation of the Third Section Theorem and Its Proof First, the definition and nature of the Walsh function Second, the new application of Walsh function: block design Third, Walsh function, block design and performance Fourth, Walsh function and strengthen the relativity theory The fourth chapter is the number of new knowledge Section 1 Study on the Order of Groups First, group order and number Second, the order of the sequence and order group Third, the order and replacement Fourth, the invariance of cross ratio rules The Second Section of Eighth Palace Number Theory and the Structure of Dai Group The Structure of One and Eight Palaces and the Group The two-octagon matrix and the Walsh function Three, perfect sixteen yuan order group The mathematical unity of the typical gossip sequence in the third quarter First, the documentary records of the classic gossip sequence Second, the table can be expressed as a mathematical function The fifth chapter changes the new solution Section 1 Intrinsic figure and periodic symmetry function First, the nature of the periodic symmetry function Second, the case analysis The second section of the easy vector representation and its transformation First, the easy mathematical connotation Second, easy vector representation Third, the transformation of the easy vector IV. Diagonal matrix: transform operator Section 6 6-order Operators: Sixty-four Shifts One, no overturning, only change sign (main diagonal matrix) Second, first inverted, post-transformation (subdiagonal matrix) Third, pair transformation (I type): upside down, upside down transformation Fourth, confrontation transformation (type II): squat down, upside down Chapter 6: New Theory of Order The first section of the current "Book of Changes" sequence structure and its interpretation First, the structural analysis of this "Book of Changes" order Second, today's "Book of Changes" sequence deduction generation III. Discussion: The status of SAR A and B in the current "Book of Changes" preface A Preliminary Study on the Arrangement of Mathematical Rules in the Second Section of Today's Book of Changes First, sequence and sequence code Second, the basic rules of order distribution The Third Quarter: Revisiting the Mathematical Rules of the Book of Changes First, discuss the distribution law of Yin and Wuyang Second, discuss the distribution law of Sanyin Sanyang Third, on the distribution law of the twelve rumor IV. Ordinal Disposition Distribution The fourth quarter of this book "Book of Changes" arranges the mathematics law A mathematical representation of a special simple sequence and its general terms Second, the order of the layout of the law and its general terms Third, the principle of integration of sequence layout Fourth, the further study of order and order Section 5: The Coordinate Geometric Solution to the Distribution Rules of Preface and Miscellaneous in Zhouyi First, hybrid and its code sequence The construction of two, thirty-six grid checkerboard and Helu seventy-six square chart Third, the art of straight lines: "Preface and Postscript" Fourth, the creation of the plane: "mixed mantis" order three-dimensional geometric illustration V. Discussion references index
Notes
HK$ Donated by:

(Mathematics and Statistics Series The 20th Century Chinese Mathematics Historical Research Series 1) 数学·统计学系列 二十世纪中国数学史料研究第1辑 ISBN: 9787560354415

DO NOT DELETE
目录
第一编综述
第一篇陈省身的期望
第二篇从数字看20世纪前半叶现代数学在中国的发展
第三篇20世纪前半叶获数学学科博士学位的中国留学生
第四篇20世纪前半叶中国数学家论文集萃
第五篇“五四”时期的数理学会和数理杂志及人才成长
第六篇对交通大学数学系早期的若干史实考证
第七篇三十年代清华促进华罗庚、陈省身成才的思考
第八篇1938年的大学师生“长征”
第九篇抗日战争时期的西南联大数学系
第十篇数学老人话沧桑——苏步青教授访谈录
第十一篇陈省身教授谈中国数学会
第十二篇陈省身教授回忆“新中国数学会”
第十三篇抗日战争时期的新中国数学会
第十四篇四十年代获国家学术奖励金的数学家
第十五篇四十年代的部聘教授
第十六篇算学、数学与Mathematics译名的变迁
第十七篇中华人民共和国建国前后中国数学会恢复活动史实考证
第十八篇陕西省数学会成立前后
第十九篇“文革”期间《马克思数学手稿》的出版
第二十篇“六五”期间我国数学学科博士研究生的培养工作
第二十一篇我国数学学科率先赶上世界先进水平的可能性
第二十二篇参加“21世纪中国数学展望”学术讨论会纪实
第二十三篇中国与国际数学家大会
第二编中国数学家
第一篇中国高等学校数学系第一位系主任冯祖荀
第二篇在大江南北创建高等学校数学系的黄际遇
第三篇中国数学会首任主席胡敦复
第四篇甘当开路小工的中国第一位数学博士胡明复
第五篇中国数论的倡始人杨武之
第六篇中国现行数学期刊最早的创办人刘正经
第七篇中国教育学会数学教学研究会首任理事长魏庚人
第八篇抗日战争中的熊庆来
第九篇抗日战争时期的陈建功和苏步青
第十篇同学·师生·友谊——追记一张具有历史意义的老照片
第十一篇纪念刘亦珩百年诞辰
第十二篇生命不息奉献不止——追记吴大任先生晚年对我的指导
第十三篇夕阳光照——忆与赵慈庚老师的忘年交
第十四篇教书一时教人一世
第十五篇要欣赏别人的好工作——纪念陈省身百年诞辰
第十六篇李珍焕教授的南开情
第十七篇数学是王选成功的知识基础
后记
table of Contents
The first edit
The first piece of Chen’s expectations
The second article looks at the development of modern mathematics in China in the first half of the 20th century from a number
The third Chinese student studying for a Ph.D. in mathematics in the first half of the 20th century
The fourth chapter of the first half of the 20th century Chinese mathematicians extract
The 5th “May 4th” period of the mathematical sciences and mathematical magazines and personnel growth
The sixth chapter examines some historical facts in the early stage of the mathematics department of Jiaotong University.
The seventh article Tsinghua promotes Hua Luogeng and Chen Shengnian to become talents in the 1930s
The eighth article “The Long March” of teachers and students in 1938
The 9th Mathematics Department of the Southwest Associated University during the Anti-Japanese War
The tenth chapter of the old mathematics vicissitudes of life – An interview with Prof. Su Buqing
The eleventh chapter of Professor Chen Shengshen talks about the Chinese Mathematical Society
Twelfth Prof. Chen Shengshi recalls “The New China Mathematical Society”
Thirteenth New China Mathematical Society during the War of Resistance Against Japan
The fourteenth mathematician who won the national academic award in the forties
The fifteenth part of the forties professor
Chapter 16 Changes in Mathematical and Mathematical Translations
Article 17 Historical Research on the Restoration of the Chinese Mathematical Society before and after the Founding of the People’s Republic of China
Article 18 Before and after the establishment of Shaanxi Mathematical Association
The 19th publication of “Marx’s Mathematical Manuscript” during the “Cultural Revolution”
The 20th “Five-Five” Period of the Training of Doctoral Candidates for Mathematics in China
The Twenty-first Possibility of China’s Mathematics Disciplines Taking the Lead in World Advanced Level
Part Twenty-two Papers Participated in the “21st Century Chinese Mathematical Perspectives” Colloquium
The 23rd China and International Mathematicians Congress
Second Chinese mathematician
The first member of the Department of Mathematics, China’s college of higher education, Feng Zhujun, the first dean
The second article in the establishment of a college of mathematics in the north and south of the river
The third Chairman of the Chinese Mathematical Society Hu Dunfu
The fourth article of the first doctor of mathematics in China, Gan Ming, who was a doctor of openness, Hu Mingfu
The fifth author Yang Wuzhi, the founder of Chinese Number Theory
The sixth author Liu Zhengjing, the earliest founder of the current Chinese mathematics journal
The seventh chapter of the Chinese Academy of Education Mathematics Teaching Research Association, the first director Wei Gengren
The eighth article in the Anti-Japanese War Xiong Qinglai
The 9th Anti-Japanese War period Chen Jiangong and Su Buqing
The Tenth Student, Teacher, Student, and Friendship – Remembering a historic photo
The eleventh commemoration of Liu Yifan’s 100th birthday
Twelfth Life Endlessly Dedicated – In Memory of Mr. Wu Daren’s Guidance to Me in His Later Years
The Thirteenth Sunset Photo – Reminiscences with Zhao Cigeng
The fourteenth teaching teaches one moment
The fifteenth chapter to appreciate other people’s good work – to commemorate the centennial
Chapter 16 Professor Li Zhenhuan’s Nankai Love
Chapter 17 Mathematics is the Knowledge Foundation for Wang Xuan’s Success
postscript

Share This Book

Similar Titles

"I took a deep breath and listened to the old brag of my heart: I am, I am, I am." - Sylvia Plath, The Bell Jar

(Mathematics and Statistics Series The 20th Century Chinese Mathematics Historical Research Series 1) 数学·统计学系列 二十世纪中国数学史料研究第1辑

Author: 张友余
Pages: 351
Category: Mathematics 數學 道象理數 算術
Publisher: 哈尔滨工业大学出版社
Publication Date: 2016
Finished? No
Signed? No
First Edition? No

Purchase this title at:

Description
*国现代数学史的研究已是时不我待,在这样的形势下,深入调研、全面捜寻与积累**手史料,同时从各个视角、各个方面、各种层次开展专题研究,应该是目前*国现代数学史研究的正确方向。本书正是出于这个明确目标编写而成的。

全书分为两编**编是综合性专题研究,第二编是二十世纪部分*国数学家的传记资料。 目录 第一编综述 第一篇陈省身的期望 第二篇从数字看20世纪前半叶现代数学在中国的发展 第三篇20世纪前半叶获数学学科博士学位的中国留学生 第四篇20世纪前半叶中国数学家论文集萃 第五篇“五四”时期的数理学会和数理杂志及人才成长 第六篇对交通大学数学系早期的若干史实考证 第七篇三十年代清华促进华罗庚、陈省身成才的思考 第八篇1938年的大学师生“长征” 第九篇抗日战争时期的西南联大数学系 第十篇数学老人话沧桑——苏步青教授访谈录 第十一篇陈省身教授谈中国数学会 第十二篇陈省身教授回忆“新中国数学会” 第十三篇抗日战争时期的新中国数学会 第十四篇四十年代获国家学术奖励金的数学家 第十五篇四十年代的部聘教授 第十六篇算学、数学与Mathematics译名的变迁 第十七篇中华人民共和国建国前后中国数学会恢复活动史实考证 第十八篇陕西省数学会成立前后 第十九篇“文革”期间《马克思数学手稿》的出版 第二十篇“六五”期间我国数学学科博士研究生的培养工作 第二十一篇我国数学学科率先赶上世界先进水平的可能性 第二十二篇参加“21世纪中国数学展望”学术讨论会纪实 第二十三篇中国与国际数学家大会 第二编中国数学家 第一篇中国高等学校数学系第一位系主任冯祖荀 第二篇在大江南北创建高等学校数学系的黄际遇 第三篇中国数学会首任主席胡敦复 第四篇甘当开路小工的中国第一位数学博士胡明复 第五篇中国数论的倡始人杨武之 第六篇中国现行数学期刊最早的创办人刘正经 第七篇中国教育学会数学教学研究会首任理事长魏庚人 第八篇抗日战争中的熊庆来 第九篇抗日战争时期的陈建功和苏步青 第十篇同学·师生·友谊——追记一张具有历史意义的老照片 第十一篇纪念刘亦珩百年诞辰 第十二篇生命不息奉献不止——追记吴大任先生晚年对我的指导 第十三篇夕阳光照——忆与赵慈庚老师的忘年交 第十四篇教书一时教人一世 第十五篇要欣赏别人的好工作——纪念陈省身百年诞辰 第十六篇李珍焕教授的南开情 第十七篇数学是王选成功的知识基础 后记 table of Contents The first edit The first piece of Chen's expectations The second article looks at the development of modern mathematics in China in the first half of the 20th century from a number The third Chinese student studying for a Ph.D. in mathematics in the first half of the 20th century The fourth chapter of the first half of the 20th century Chinese mathematicians extract The 5th "May 4th" period of the mathematical sciences and mathematical magazines and personnel growth The sixth chapter examines some historical facts in the early stage of the mathematics department of Jiaotong University. The seventh article Tsinghua promotes Hua Luogeng and Chen Shengnian to become talents in the 1930s The eighth article "The Long March" of teachers and students in 1938 The 9th Mathematics Department of the Southwest Associated University during the Anti-Japanese War The tenth chapter of the old mathematics vicissitudes of life - An interview with Prof. Su Buqing The eleventh chapter of Professor Chen Shengshen talks about the Chinese Mathematical Society Twelfth Prof. Chen Shengshi recalls "The New China Mathematical Society" Thirteenth New China Mathematical Society during the War of Resistance Against Japan The fourteenth mathematician who won the national academic award in the forties The fifteenth part of the forties professor Chapter 16 Changes in Mathematical and Mathematical Translations Article 17 Historical Research on the Restoration of the Chinese Mathematical Society before and after the Founding of the People's Republic of China Article 18 Before and after the establishment of Shaanxi Mathematical Association The 19th publication of "Marx's Mathematical Manuscript" during the "Cultural Revolution" The 20th "Five-Five" Period of the Training of Doctoral Candidates for Mathematics in China The Twenty-first Possibility of China's Mathematics Disciplines Taking the Lead in World Advanced Level Part Twenty-two Papers Participated in the "21st Century Chinese Mathematical Perspectives" Colloquium The 23rd China and International Mathematicians Congress Second Chinese mathematician The first member of the Department of Mathematics, China's college of higher education, Feng Zhujun, the first dean The second article in the establishment of a college of mathematics in the north and south of the river The third Chairman of the Chinese Mathematical Society Hu Dunfu The fourth article of the first doctor of mathematics in China, Gan Ming, who was a doctor of openness, Hu Mingfu The fifth author Yang Wuzhi, the founder of Chinese Number Theory The sixth author Liu Zhengjing, the earliest founder of the current Chinese mathematics journal The seventh chapter of the Chinese Academy of Education Mathematics Teaching Research Association, the first director Wei Gengren The eighth article in the Anti-Japanese War Xiong Qinglai The 9th Anti-Japanese War period Chen Jiangong and Su Buqing The Tenth Student, Teacher, Student, and Friendship - Remembering a historic photo The eleventh commemoration of Liu Yifan’s 100th birthday Twelfth Life Endlessly Dedicated - In Memory of Mr. Wu Daren's Guidance to Me in His Later Years The Thirteenth Sunset Photo - Reminiscences with Zhao Cigeng The fourteenth teaching teaches one moment The fifteenth chapter to appreciate other people's good work - to commemorate the centennial Chapter 16 Professor Li Zhenhuan's Nankai Love Chapter 17 Mathematics is the Knowledge Foundation for Wang Xuan's Success postscript
Notes
HK$ Donated by:

(I Ching under the perspective of Hermeneutics / The Series of I Ching Study under the perspectives of Confucianism) 儒学视野下的易学(精)/跨学科视野下的易学丛书 ISBN: 9787562353645

DO NOT DELETE

Share This Book

Similar Titles

"Most men and women will grow up to love their servitude and will never dream of revolution." - Brave New World

(I Ching under the perspective of Hermeneutics / The Series of I Ching Study under the perspectives of Confucianism) 儒学视野下的易学(精)/跨学科视野下的易学丛书

Author: 史少博
Pages: 234
Category: Science and Civilization in China 中國科學技術史
Publisher: South China University of Technology Press
Publication Date: 2017
Finished? No
Signed? No
First Edition? No

Purchase this title at:

Description
史少博著的《儒学视野下的易学(精)》不仅阐释了传统意义上的儒学视野下象数、义理派彼此消长的易学发展脉络,而且阐释了儒学视野下的"卜筮"说、儒学视野下的"风水"说,并且还阐释了儒学对国外传播中的易学传播。不拘泥传统意义上的易学象数、义理脉络的研究,而阐释儒学视野下的易学,在学术上将具有一定的价值。
Notes
HK$ Donated by:

诠释学视野下的易学(精)/跨学科视野下的易学丛书 (I Ching under the perspective of Hermeneutics / The Series of I Ching Study under Transdisciplinary perspectives) ISBN: 9787562353577

DO NOT DELETE

Share This Book

Similar Titles

“‘Are you ready?’ Klaus asked finally. ‘No,’ Sunny answered. ‘Me neither,’ Violet said, ‘but if we wait until we’re ready we’ll be waiting for the rest of our lives, Let’s go.’" - Daniel Handler, The Ersatz Elevator

诠释学视野下的易学(精)/跨学科视野下的易学丛书 I Ching under the perspective of Hermeneutics / The Series of I Ching Study under Transdisciplinary perspectives

Author: 杨效雷 yang xiao lei
Pages: 244
Category: Science and Civilization in China 中國科學技術史
Publisher: South China University of Technology Press
Publication Date: 2017
Finished? No
Signed? No
First Edition? No

Purchase this title at:

Description
杨效雷著的《诠释学视野下的易学(精)》在前人相关研究成果的基础之上,有意识地借鉴"视域""先行结构"等诠释学理论,总结易学史上各家新说产生的来龙去脉,相互攻驳,吸收西方解释学方法,以不同的视角演绎易学大系的承传,于微观考据和宏观论述都时出新意,可作为易学经典名著的导读之作。 目录 第一章两汉时期的《周易》诠释 第一节孟喜和京房的《周易》诠释 一、孟喜的《周易》诠释 二、京房的《周易》诠释 第二节郑玄和荀爽的《周易》诠释 一、郑玄的《周易》诠释 二、荀爽的《周易》诠释 第三节虞翻的《周易》诠释 一、月体纳甲说 二、逸象 第二章魏晋至宋元时期的《周易》诠释 第一节王弼的《周易》诠释 一、得意忘象 二、说以老庄 第二节程颐的《周易》诠释 一、以“理”诠《易》 二、以“民生”思想诠《易》 三、“卦才”和“乾坤卦变”说 第三节朱熹的《周易》诠释 一、以筮诠《易》 二、以图诠《易》 第四节吴澄的《周易》诠释 一、卦统说 二、卦主说 三、卦变说 第三章明清时期的《周易》诠释 第一节来知德的《周易》诠释 一、不知其象,《易》不注可也 二、以象诠《易》的意义 三、以象诠《易》的弊病 第二节王夫之的《周易》诠释 一、以唯物主义自然观诠《易》 二、以“理气”观诠《易》 三、以“道器”观诠《易》 四、以阴阳对立统一的矛盾观诠《易》 五、以动静对立统一的运动观诠《易》 六、以“常”“变”对立统一的变化观诠《易》 七、以其他思想诠《易》 第三节李塨的《周易》诠释 一、“专明人事,切于实用”的易学观 二、为人处世之见解和主张的渗入 三、《周易传注》中所见李塨的哲学思想 四、阐发政治伦理 五、超越功利的吉凶观 六、《周易传注》中的道家思想 七、引史事以证经文 第四节焦循的《周易》诠释 一、旁通、相错与时行三说考述 二、焦循易学构架的道德义理诠释与“声训” 第五节高邮王氏父子的《周易》诠释 一、对虞翻《易》注的辩驳 二、对郑玄和荀爽《易》注的辩驳 附录一“河图”“洛书”非点阵之图考 一、先秦文献中有关“河图”“洛书”的原始记载之分析 二、宋人作伪之破绽 三、两个争论焦点的讨论 附录二《周易》阴阳观与和合文化析论 一、《周易》阴阳交易观与和合文化同一性 二、《周易》阴阳分判观与和合文化差异性 三、《周易》尊阳抑阴观与和合文化主导性 关键词索引
Notes
HK$ Donated by:

I Ching under the perspective of historiograpical Studies (The Series of I Ching under Transdisciplinary perspectives) 史学视野下的易学(精)/跨学科视野下的易学丛书

DO NOT DELETE

Share This Book

Similar Titles

"A dream, all a dream, that ends in nothing, and leaves the sleeper where he lay down, but I wish you to know that you inspired it." - Charles Dickens, A Tale of Two Cities

史学视野下的易学(精)/跨学科视野下的易学丛书

Author: 朱彦民
Pages: 263
Category: Science and Civilization in China 中國科學技術史
Publisher: South China University of Technology Press
Publication Date: 2017
Finished? No
Signed? No
First Edition? No

Purchase this title at:

Description
朱彦民著的《史学视野下的易学(精)》探讨《周易》作为史实解读的依据、方法和存在的问题。并结合考古发现的新史料论述易学中一些热点问题,如数字卦问题;也将结合文献史料论述易学中的一些基本问题,如筮法问题。除了以史观易、以史解易、古史辨易和援易治史、以易为史外,展开易史学观和史易探索,并且以易社会史为创新点。
Notes
HK$ Donated by: